
Shortlist Selection with Residual-Aware Distance Estimator

for K-Nearest Neighbor Search

Jae-Pil Heo1, Zhe Lin2, Xiaohui Shen2, Jonathan Brandt2, Sung-Eui Yoon1

1 KAIST 2 Adobe Research

Abstract

In this paper, we introduce a novel shortlist computa-

tion algorithm for approximate, high-dimensional nearest

neighbor search. Our method relies on a novel distance

estimator: the residual-aware distance estimator, that ac-

counts for the residual distances of data points to their re-

spective quantized centroids, and uses it for accurate short-

list computation. Furthermore, we perform the residual-

aware distance estimation with little additional memory and

computational cost through simple pre-computation meth-

ods for inverted index and multi-index schemes. Because

it modifies the initial shortlist collection phase, our new

algorithm is applicable to most inverted indexing methods

that use vector quantization. We have tested the proposed

method with the inverted index and multi-index on a diverse

set of benchmarks including up to one billion data points

with varying dimensions, and found that our method ro-

bustly improves the accuracy of shortlists (up to 127% rel-

atively higher) over the state-of-the-art techniques with a

comparable or even faster computational cost.

1. Introduction

Approximate K-nearest neighbor (ANN) search is a fun-

damental problem in computer science, which has many

practical applications, especially in many computer vision

tasks such as image retrieval, feature matching, tracking,

object recognition, etc. Conventional ANN techniques can

be inefficient in both speed and memory, when the size of

the database is large and the dimensionality of the feature

space is high, as is the case for large-scale image retrieval

using holistic descriptors.

In order to achieve high scalability, recent search meth-

ods typically adopt an inverted index-based representation

with a compact data representation to perform large-scale

retrieval in two steps: candidate retrieval and candidate re-

ranking. These approaches first collect candidates for K-

nearest neighbors called a shortlist by quantized indices,

and then reorder them by exhaustive distance computa-

tions with more accurate distance approximations. Accu-

rate shortlist retrieval is a crucial first step for large-scale

retrieval systems as it determines the upper-bound perfor-

mance for the K-nearest neighbor search in such two-step

search process.

Previous methods have attempted to introduce better

quantization models (e.g., product quantization [14]) and

inverted indexing schemes (e.g., the inverted index and in-

verted multi-index [1]). These approaches identify inverted

lists whose centroids are close to the query, and include all

the data points in those inverted lists to the shortlist. While

these approaches are very efficient for collecting shortlists,

they do not consider fine-grained positions of those data

points, and thus the computed shortlist may still contain

many data points that are too far away from the query, and

close neighbors could be missed in the shortlist due to the

quantization error.

Our contributions. In this paper, we introduce a novel

shortlist computation algorithm based on the inverted

lists for high-dimensional, approximate K-nearest neigh-

bor search. We first propose a novel distance estimator,

residual-aware distance estimator, between a query and data

points by considering the residual distances to the quan-

tized centroids (Sec. 4.1). We also propose effective pre-

computation methods of using our distance estimator for

runtime queries with minor memory and computation costs

with the inverted index (Sec. 4.2) and multi-index (Sec. 4.3).

We have extensively evaluated our method on a diverse set

of large-scale benchmarks consisting of up to one billion

data with SIFT, GIST, VLAD, and CNN features. We have

found that our method significantly improves the accuracy

of shortlists over the state-of-the-art techniques with a com-

parable or even faster computational performance (Sec. 5).

2. Related Work

There have been many tree-based techniques for ANN

search, since those hierarchical structures provide a log-

arithmic search cost. Notable approaches include KD-

tree [5], randomized KD-tree forests [24], HKM (Hierar-

chical K-means tree) [21], etc. Unfortunately, those tree-

1

based methods provide less effective indexing for large-

scale high-dimensional data.

Designing inverted indexing structures based on vector

quantization is a popular alternative to the tree-based ap-

proaches. In such methods, the index for a data point is de-

fined by its cluster centroid in high-dimensional data, and

the data point is assigned to the nearest cluster according

to the distance to the centroid. Jégou et al. [14] have ap-

plied vector quantization to the approximate nearest neigh-

bor search problem. Inverted multi-index [1] has been pro-

posed to use product quantization [14] to generate the in-

dex. The technique can acquire a large number of clusters

without incurring a high computational overhead in index-

ing and search. Ge et al. [7] have optimized the inverted

multi-index technique by reducing the quantization error

based on their prior optimization framework [6], and they

mostly used two dimensional index using two subspaces.

Iwamura et al. [13] have proposed a bucket distance hash-

ing scheme that uses higher-dimensional multi-index to in-

crease the number of indices to cover the database size,

and a shortlist retrieval method specialized to their index-

ing method. Xia et al. [27] have proposed the joint inverted

index that defines multiple sets of centroids for higher ac-

curacy.

At a high level, the aforementioned methods based on

vector quantization have been mostly focused on reducing

the quantization error. In other words, they have designed

more accurate vector quantization methods by increasing

the number of centroids or optimizing the subspaces. While

these prior techniques show high accuracy, they are mainly

designed and evaluated for one nearest neighbor search,

i.e., 1-NN. In contrast, our goal is to develop an accurate

shortlist retrieval method for K-nearest neighbor search,

where K can be large (e.g. 100, and 1000), which is use-

ful for large-scale visual search in practice. Furthermore,

these prior works are mostly evaluated on SIFT [20] and

GIST [23] descriptors, but are not evaluated against very

high-dimensional (e.g., 8K) and recent image descriptors

such as VLAD [15] or deep convolutional neural network

(CNN) features [18].

Once a shortlist is selected, the data in the shortlist is

re-ranked based on exhaustive distance computations. It is

impractical to use raw vectors of the data due to the con-

sequent high computational and memory cost. Hence there

have been a lot of techniques to represent data as compact

codes. Those compact data representations provide bene-

fits to both of computational and memory costs. There are

two popular approaches, hashing and product quantization.

Examples of hashing techniques include LSH [12, 4, 19],

spectral hashing [26], ITQ [8], and etc. [9, 16, 10]. Exam-

ples of quantization-based methods include PQ [14], trans-

form coding [2], OPQ [6], and etc. [17, 22]. Regardless

of distance computation methods used in these techniques,

the performance of overall retrieval systems is highly de-

pendent on the accuracy of the shortlist computed by index-

ing schemes. In this paper, we propose a shortlist method

that can be used with different indexing schemes to improve

the overall accuracy without incurring a high computational

overhead.

3. Background

We explain the background of computing shortlists with

an inverted indexing scheme.

Suppose that an inverted file consists of M inverted lists,

L1, ..., LM . Each inverted list Li has its corresponding cen-

troid ci ∈ R
D. In general, the centroids are computed by

the k-means clustering algorithm [15]. Given a database

X = {x1, x2, ..., xN}, each item x ∈ X is assigned to an

inverted list based on the nearest centroid index computed

by a vector quantizer q(x):

q(x) = argmin
ci

d(x, ci),

where d(·, ·) is the Euclidean distance between two vectors.

Each inverted list Li contains data points whose nearest

centroid is ci:

Li = {x|q(x) = ci, x ∈ X} = {xi
1
, ..., xi

ni
}.

When processing a query y, a shortlist S is first identified

to be a set of candidate search results, whose size is T . To

collect T data items from the inverted file, inverted lists are

traversed in the order of increasing distance to the centroids

d(y, ci). Once the shortlist S is prepared, the items in S
are re-ranked by exhaustive distance evaluations with either

the original data or their compact codes. The problem that

we address in this paper is identifying an optimal shortlist

S ⊂ X , which maximizes the recall rate for retrieval.

4. Our Approach

In this section, we first explain our distance estimator,

followed by its applications to the inverted index and multi-

index schemes for handling large-scale search problems.

4.1. ResidualAware Distance Estimator

In the conventional approach, the residual distance from

the data point x to its corresponding centroid q(x) is omit-

ted. In this paper, we propose a more accurate distance es-

timator by taking the residual distance into account. We

denote this residual distance as rx:

rx = d(x, q(x)).

Similarly, we denote the distance between a query y and the

quantized data q(x) as hy,x:

hy,x = d(y, q(x)).

The exact squared distance between a query y and a data

item x can be written as the following according to the law

of cosines:

d(y, x)2 = h2

y,x + r2x − 2hy,xrx cos θ

= h2

y,x + r2x(1−
2hy,x

rx
cos θ), (1)

where θ is the angle between two vectors of y − q(x) and

x− q(x).

While the term 1−
2hy,x

rx
cos θ depends on specific x and

y, we approximate the exact distance by treating this term

as a constant αK . The reason is to constrain the distance es-

timator to have a factorized representation in terms of h2

y,x

depending on y, and r2x, which is independent from y, for

efficiency. This results in our residual-aware distance esti-

mator:

d̂(y, x)2 = h2

y,x + αKr2x, (2)

where αK is a constant value within the range [0, 1]. Short-

lists computed by the residual-aware distance estimator

(Eq. 2) with αK = 0 is identical to those of the conven-

tional approach.

Note that two random vectors are highly likely to be or-

thogonal or near-orthogonal in a high-dimensional space [3,

11] and the orthogonality holds better with increasing di-

mensionality. As a result, we use 1 as the default value of

αK instead of zero. The distance estimator with αK = 1,

however, is likely to overestimate distances, when two vec-

tors of y − q(x) and x− q(x) are not perfectly orthogonal.

To mitigate the overestimation problem of our distance

estimator, we train αK depending on the target number of

true neighbors, K, that we aim to search for. For our train-

ing process, we first randomly choose Ns data {s1, ..., sNs
}

from the database X , and compute K-nearest neighbors

for each sample, si. Let us denote ni
j as the jth nearest

neighbor of the training sample si. We could compute an

average αK from this set of nearest neighbor data, but it

can result in over-fitting. To avoid the over-fitting issue,

we also randomly select another K(=the target number of

true neighbors) different data points for each si, denoted

by {mi
1
, ...,mi

K}. We then train αK value with a simple

equation that computes the average value from those two

different data sets:

αK =
1

2KNs

Ns∑

i=1

(
K∑

j=1

f(si, n
i
j) +

K∑

j=1

f(si,m
i
j)), (3)

where

f(y, x) = 1−
2hy,x

rx
cos θ =

d(y, x)2 − h2

y,x

r2x
.

While training αK values, we ignore any sample that is the

cluster centroid itself (i.e., x = q(x)), to avoid the zero de-

nominator. Since limited numbers of K are commonly used

such as K = 1, 50, 100, or 1000 in practice, we can pre-

compute αK for a discrete set of K parameters. When we

need to use a new K value that is untrained, we can simply

use the default value 1 for αK or linearly interpolated αK

based on precomputed neighboring parameters. In practice,

using αK values computed by this training process shows

up to 20% higher accuracy over the default value αK = 1.

4.2. Inverted Index

We first explain our method with the inverted index

scheme. We introduce a simple lookup table precomputa-

tion method that enables an effective and efficient way of

our distance estimator for accurate shortlist computation.

4.2.1 Lookup Table Precomputation

In order to compute a shortlist according to our distance es-

timator (Eq. 2), we need to have the distances from data

points to their corresponding cluster centroids, e.g., rx =
d(x, q(x)) and hy,x = d(y, q(x)) in Eq. 2, in runtime.

Unfortunately, computing such distances on-the-fly is im-

practical due to its computational cost and memory over-

head. Furthermore, the data points are encoded into com-

pact codes so we cannot even access the original values of

those data.

To overcome these issues, we propose an efficient lookup

table-based method. Our distance estimator (Eq. 2) consists

of two decoupled variables hy,x and rx. Since rx is inde-

pendent from a query, we can precompute those values and

retrieve them in run-time. However, storing those values

requires an additional memory overhead, i.e., 4 bytes for

each item. Instead, we propose to use a lookup table that

only contains the number of data items whose rx belongs

to a certain range, which yield a negligible storage/memory

overhead. In the following, we explain the details of the

look-up table construction method.

During the inverted file construction stage, we first pre-

pare data points, xi
j , for each inverted list, Li, and then

sort them in the non-decreasing way according to the dis-

tance between xi
j and its centroid, ci. Next, we compute

the global minimal and maximal squared distances in the

database as the following:

Rm = min d(x, q(x))2, RM = max d(x, q(x))2.

We then uniformly partition the range [Rm, RM] of those

squared distances into Z intervals, each of which has a ∆R
span: ∆R = (RM −Rm)/Z. We denote the j-th boundary

value of Z different intervals to be Rj , i.e., Rj = Rm +
j∆R.

We finally define each entry of a lookup table, W (i, j),
to memorize the number of data points in the inverted list

Li, whose squared distances to the centroid are less than Rj

as follows:

W (i, j) = |{x|d(x, ci)
2 < Rj , x ∈ Li}|, (4)

∆

(a) Precomputation (b) Runtime

Figure 1. An example of our lookup table W and shortlist computation. (a) The number of data points in L2 whose distances to the centroid

c2 are less than R5 is W (2, 5) = 24. (b) The number of data whose estimated distances are less than t1 (red boxes) is approximately the

sum of values on the red line. When T = 50, the binary search is performed in an order of t1 → t2 → t3.

where | · | is the cardinality of the given set. Fig. 1(a) shows

an example lookup table computed by our method.

The lookup table W has O(MZ) memory complexity,

where M and Z are independent of the dataset size. As a

result, its memory overhead can be set to be much smaller

than the size of the database, while providing high perfor-

mance improvement over the on-the-fly computation. For

example, the overhead of the lookup table takes 64 MB for

our tested benchmark consisting of 1 billion data, when we

use M = 214 and Z = 1024.

4.2.2 Shortlist Computation

We precomputed the query independent term r2x of our

residual-aware distance estimator (Eq. 2 in the lookup table

W . The distances h2

y,x between the query y and centroids

q(x), the query-dependent term of our distance estimator,

can only be computed during the runtime. For simplicity,

we introduce h2

i to denote the squared distance between a

query y and ci, i.e., h2

i = d(y, ci)
2.

The key idea of our new shortlist computation method

is to consider all the inverted list jointly by aligning them

with respect to the estimated distances to the query. Before

presenting our shortlist computation method, we introduce

a new function, w(y, i, t), which counts the number of data

points in the inverted list Li whose estimated distance from

the query y is less than t, as the following:

w(y, i, t) = |{x|d̂(y, x)2 < t, x ∈ Li}|

= |{x|h2

y,x + αKr2x < t, x ∈ Li}|(∵ Eq. 2)

= |{x|h2

i + αKr2x < t, x ∈ Li}|(∵ q(x) = ci)

= |{x|αKr2x < t− h2

i , x ∈ Li}|

= |{x|r2x < (t− h2

i)/αK , x ∈ Li}|. (5)

Note that Eq. 5 has the same form as Eq. 4, when

(t − h2

i)/αK is replaced with Rj . To utilize the lookup

table W (i, j), we need to compute the index j, and we can

approximate w(y, i, t) as follows:

w(y, i, t) = W (i,

⌈
(t− h2

i)/αK −Rm

∆R

⌉

). (6)

Based on this equation, we can compute the number of data

within a particular distance t by considering r2x and h2

i terms

jointly through the lookup table W . The total number of

data points in all the inverted lists that are within the dis-

tance t can be computed by
∑K

i=1
w(y, i, t). For example,

in Fig. 1(b) the number of data points which are within the

distance t1 is computed by summing numbers on the red

line.

When a query y is given at runtime, we first compute and

store h2

i for all the ci. We then estimate the optimal thresh-

old t of the estimated distance that meets a given short-

list size T . Since elements in each row of W (i, ·) are ar-

ranged in the non-decreasing order, the column-wise sum

in the table W has also the non-decreasing order. There-

fore, w(y, i, t) is also non-decreasing as we increase the

value of t. Thanks to this simple property, we can use bi-

nary search to find an appropriate threshold t efficiently.

The binary search for t is performed within the range of

[minh2

i + αKRm,maxh2

i + αKRM]. We stop the search

when we found the largest t value that satisfies the inequal-

ity: T ≤
∑K

i=1
w(y, i, t).

The final shortlist is constructed by collecting w(y, i, t)
data points from an inverted list Li that have smaller es-

timated distances than the threshold found by the binary

search (Fig. 1).

Our method performs a column-wise sum on the look-

up table W and the binary search among Z intervals. As

a result, our cost is O(M logZ). In practice Z = 1024
provides a good balance between the speed and accuracy

(Sec. 5.2).

4.3. Inverted MultiIndex

The inverted multi-index (IMI) [1] supports exponen-

tially increasing number of inverted lists. Although we can

directly use the method described in Sec. 4.2 for the IMI,

it can become inefficient in terms of memory and compu-

tation cost due to the large number of inverted lists. Thus,

we propose a shortlist selection method tailored to the IMI

with our residual-aware distance estimator.

(1,1) (1,2) (2,1) (2,2)

(1,1)

(1,2)

(2,1)

(2,2)

Subspace #1

S
u

b
sp

ac
e

#
2

Cluster ID

Distance ID

̅ , , .̅ , , .̅ , , .̅ , , .
Subspace #1 ̅ , , .̅ , , .̅ , , .̅ , , .

Subspace #2

(a) Multi-Index Structure

(1,1)
1.1

(2,1)
1.4

(2,2)
1.8

(1,2)
2.1

(2,1) 1.2 2.3 2.6 3.0 3.3

(2,2) 1.6 2.7 3.0 3.4 3.7

(1,1) 1.8 2.9 3.2 3.6 3.9

(1,2) 2.0 3.1 3.4 3.8 4.1

, ., .
Subspace #1

, ., .
Subspace #2

, , , , Traverse Order, , , : ., , , : ., , , : ., , , : ., , , : .
…..

Multi-Index Distance

(b) Runtime

Figure 2. An example of our multi-index structure and shortlist computation. (a) An index in a subspace is a pair of a cluster ID and a

quantized residual distance ID. The representative residual distances are pre-computed since they are independent from the query. (b) The

distances from a query to centroids h2

k,i are computed. Based on h2

k,i the distances to indices in kth subspace d̃2k,i,j = h2

k,i + αK,k r̄
2

k,i,j

computed (blue values). In this example, αK,k is 1 for simplicity. The indices in each subspace are sorted. We traverse the table in order

of estimated distance by using the multi-sequence algorithm [1].

4.3.1 Indexing Structure

IMI decomposes a vector x to x = [x1 x2], where x1, x2 ∈
R

D/2 are in the 1st and 2nd subspaces. Cluster centroids

c1i and c2i are defined in the 1st and 2nd subspaces (i =
1, ...,M), respectively. Let us redefine terms used for the

inverted index (Sec. 4.2) to the kth subspace: qk(xk) =
argminck

i
d(xk, cki), rx,k = d(xk, qk(xk)), and hk,i =

d(yk, cki).

For our method built on top of IMI, we partition ith clus-

ter in the kth subspace, Xk
i = {xk|qk(xk) = cki }, accord-

ing to the residual distances rx,k. Each cluster Xk
i is then

decomposed into P partitions Xk
i,1, ... , Xk

i,P with residual

distance boundaries, Rk
i,j :

Xk
i,j = {xk|Rk

i,j−1
≤ rkx,i < Rk

i,j , x
k ∈ Xk

i }.

The residual distance boundaries Rk
i,j are determined to

divide the data equally into P partitions. Note that Rk
i,0 and

Rk
i,P are set to the min and max values in their subspaces,

respectively. We use a pair of a cluster ID i and a distance

ID j, (i, j), as the index of a subspace.

An inverted list in our multi-index is then defined by two

indices:

L[(i1, j1), (i2, j2)] = {x|x1 ∈ X1

i1,j1 , x
2 ∈ X2

i2,j2}, (7)

where, i1 and i2 are cluster IDs in 1st and 2nd subspaces,

respectively. Also, j1 and j2 are the quantized distance IDs.

4.3.2 Shortlist Computation

Our residual-aware distance estimator Eq. 2 is extended to

the inverted multi-index as the following:

d̂(y, x)2 = d(y1, q1(x1))2 + αK,1r
2

x,1

+d(y2, q2(x2))2 + αK,2r
2

x,2, (8)

where, αK,k is computed in the kth subspace, in the same

manner described in Sec. 4.1.

Storing r2x,k values or computing them in the querying

stage is impractical, as the case for the inverted list. We

could also use our lookup table method for the multi-index.

Nonetheless, this approach might generate a scalability is-

sue for the multi-index, since our search space with the

lookup table grows exponentially as we have more sub-

spaces.

Instead, we propose to a representative residual distance

for each partition for the multi-index. A representative

residual distance, r̄k,i,j , for an index (i, j) in the kth sub-

space regarding to a partition Xk
i,j is defined by the average

of residual distances of data within Xk
i,j as the following:

r̄k,i,j =

∑
rx,k

|Xk
i,j |

, for xk ∈ Xk
i,j . (9)

We then derive a residual-aware distance estimator for

our multi-index scheme for a query y and a data point x ∈
L[(i1, j1), (i2, j2)] based on Eq. 8 and Eq. 9:

d̃(y, x)2 = h2

1,i1 + αK,1r̄
2

1,i1,j1
︸ ︷︷ ︸

d̃2

1,i1,j1

+h2

2,i2 + αK,2r̄
2

2,i2,j2
︸ ︷︷ ︸

d̃2

2,i2,j2

. (10)

The squared distance between yk and an index (i, j) in kth

subspace is denoted by d̃2k,i,j as indicated in the above equa-

tion.

When a query y is given at runtime, we first compute

squared distances between the query y and cluster cen-

troids h2

1,i and h2

2,i. We then fetch precomputed values

of αK,k and r̄2k,i,j values, and compute the distances to

all the indices as: d̃2k,i,j = h2

k,i + αK,kr̄
2

k,i,j in each sub-

space with a minor computational cost; i.e. 2M addition

operation, where M is the number of indices in each sub-

space. We then sort the indices in each subspace separately

according to the computed distances d̃2k,i,j . Once the in-

dices are sorted, we traverse the multi-index structure in

the non-decreasing order of the estimated distances to se-

lect T search result candidates as the shortlist. We utilize

the multi-sequence algorithm [1] based on a priority queue.

Our multi-index structure and shortlist computation method

is illustrated in Fig. 2.

Note that the representative residual distance method can

also be applied to the inverted index (Sec. 4.2). Nonethe-

less, for the inverted index case, the lookup table with the

binary search algorithm works better, even when we need to

compute a large shortlist for the inverted index.

5. Evaluation

We use the following datasets:

• SIFT-1M and SIFT-1B: BigANN dataset [14]. 1 mil-

lion and 1 billion of 128-dimensional SIFT features.

• GIST384-1M and GIST384-80M: Tiny Images [25].

1 and 80 million of 384-dimensional GIST descriptors.

• GIST960-1M: BigANN dataset [14]. 1 million of

960-dimensional GIST descriptors.

• VLAD2K-1M and VLAD8K-1M: 1 million of 2048-

and 8192-dimensional VLAD descriptors [15].

• CNN-1M and CNN-11M: 1 and 11 million of 4096-

dimensional image features from the last fully con-

nected layer (fc7) in the CNN [18].

• S-VLAD2K-1B: 1 billion of 2048-dimensional syn-

thetic VLAD descriptors. Each VLAD descriptor is

synthesized with 1000 randomly sampled SIFT fea-

tures from SIFT-1B.

For all the datasets, we have 1000 queries disjoint from the

retrieval databases.

5.1. Protocol

We evaluate the performance of different methods based

on the accuracy of the shortlist as a function of shortlist size

T . The accuracy is measured by recall, i.e. how many true

neighbors are included in the shortlist.

We compare our method against the conventional short-

list computation method (Sec. 3) that is commonly used in

[14, 1, 7]. We represent our proposed shortlist selection

method as Ours. Each shortlist selection method is com-

bined with three different inverted indexing schemes as fol-

lows:

• II: Inverted Index [14].

• IMI: Inverted Multi-Index [1].

• OIMI: Optimized Inverted Multi-Index [7].

• BDH: Bucket Distance Hashing [13]

• II+Ours: Our method combined with II.

• IMI+Ours: Our method combined with IMI.

• OIMI+Ours: Our method combined with OIMI.

We use 100K and 1M randomly sampled training data to

train indexing methods for 1M and 1B dataset respectively.

We use 500 randomly chosen samples (Ns in Sec. 4.1)

from each dataset to train αK values. For example, the

trained α100 values for GIST960-1M, VLAD2K-1M, and

Time (ms) GIST960 VLAD2K VLAD8K CNN

II+Ours 0.37, 0.63 0.64, 0.82 3.48, 3.78 1.40, 1.63

II 0.33, 0.57 0.60, 0.75 3.33, 3.50 1.34, 1.52

IMI+Ours 0.34, 1.61 0.47, 2.24 1.92, 2.75 0.77, 1.93

IMI 0.49, 2.79 0.78, 2.67 3.43, 3.54 1.51, 3.32

OIMI+Ours 0.45, 3.50 0.87, 3.96 10.9, 11.4 2.75, 6.25

OIMI 0.63, 4.15 0.99, 4.19 13.9, 15.0 4.30, 7.35

BDH 0.09, 3.43 0.14, 5.19 0.12, 4.42 0.08, 3.60

Table 1. This table shows the shortlist computation times. The

first and second are times for the shortlist size T = 800 and T =
51200, respectively.

VLAD8K-1M are 0.58, 0.80, and 0.92 respectively. We

also use Z=1024 for II+Ours for all the experiments.

For IMI+Ours and OIMI+Ours, we use the number

of partitions of each cluster to be two, i.e., P=2, and

M=Mimi/2, where Mimi is the number of clusters used

for IMI and OIMI, to set ours to have the same number of

inverted lists with IMI and OIMI for a fair comparison. We

also tested other settings such as (P=4,M=Mimi/4), and

found that these two settings show slightly varying perfor-

mance across different benchmarks. For all the tests shown

in this paper, we report results with (P=2,M=Mimi/2).
Note that when a parameter M is specified, II and II+Ours

have M inverted lists, while IMI, OIMI, IMI+Ours, and

OIMI+Ours have M2 inverted lists.

All the methods are implemented in the C++ (Intel Com-

piler and its MKL is used for the faster performance). We

conduct the experiments on a machine that consists of 2

Xeon E5-2690 CPUs and 256GB main memory. We use

a single thread when measuring the computational time.

5.2. Results

Fig. 3 shows the accuracy of shortlists retrieved by the

tested methods on six different benchmarks consisting of

1 million high-dimensional data, when the number of true

neighbors K is 100. We use P=4 and C = 224 for BDH,

and M=1024 for all the other methods. Our shortlist se-

lection method Ours improved all the baselines II, IMI,

and OIMI on GIST384-1M, GIST960-1M, VLAD2K-

1M, VLAD8K-1M, and CNN-1M benchmarks, and pro-

vided comparable accuracy on SIFT-1M. For instance, our

method collected 103%, 126%, and 90% more true neigh-

bors compared to II, IMI, and OIMI on VLAD8K-1M, re-

spectively, when T=12800(=1.28% of the benchmark size).

Moreover, the performance gain by combining Ours be-

comes larger with higher dimensional data (GIST384-1M

vs GIST960-1M, and VLAD2K-1M vs VLAD8K-1M).

This result is achieved, mainly because our distance estima-

tor works well even with high-dimensional cases, while em-

ployed quantization methods deteriorate with those cases.

While our method shows higher accuracy over other

techniques, we also analyze the computational time for

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(a) SIFT-1M, K = 100

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(b) GIST384-1M, K = 100

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(c) GIST960-1M, K = 100

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(d) VLAD2K-1M, K = 100

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(e) VLAD8K-1M, K = 100

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(f) CNN-1M, K = 100

Figure 3. Experimental results on SIFT-1M, GIST384-1M, GIST960-1M, VLAD2K-1M, VLAD8K-1M, and CNN-1M when the number

of true neighbors K = 100.

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(a) GIST960-1M, K = 1

0

0.2

0.4

0.6

0.8

1

800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(b) GIST960-1M, K = 1000

0

0.2

0.4

0.6

0.8

1

200 400 800 1600 3200 6400 12800

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(c) VLAD8K-1M, K = 1

0

0.2

0.4

0.6

0.8

1

800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
BDH

(d) VLAD8K-1M, K = 1000

Figure 4. Experimental results on GIST960-1M and VLAD8K-1M, and CNN-1M when the number of true neighbors K = 1 and 1000.

different methods. Table 1 reports the computation time

to collect shortlists. II+Ours shows similar computation

times with II. On the other hand, IMI+Ours are faster,

173%, 119%, 28%, and 72%, over IMI in GIST960-

1M, VLAD2K-1M, VLAD8K-1M, and CNN-11M, re-

spectively. Similarly, OIMI+Ours shows 118%, 6%, 32%,

and 17% higher performance over OIMI in those datasets.

The speedup comes mainly from the smaller number of cen-

troids of our method combined with the multi-index.

We report the results with respect to the number of true

neighbors K, since the desired number of neighbors can

vary depending on applications. Fig. 4 shows the accuracy

of shortlists on GIST960-1M and VLAD8K-1M dataset,

when K=1 and K=1000. The accuracy improvement over

the baseline is larger with larger K. This trend confirms the

merits of our shortlist collection method based on the novel

distance estimator against the baseline, which relies only on

the distance between the query and the centroids.

Fig. 5(a) shows the results of II and II+Ours on CNN-

11M with three different numbers of inverted lists M =
1024, 2048, and 8192, when K = 100. II+Ours consis-

tently provides performance improvements over II for all

the tested M . Moreover, Ours+II using 1024 inverted lists

provides almost identical recall rates with II using 8192 in-

verted lists.

We now report results with large-scale datasets:

GIST384-80M and two one billion descriptors of SIFT-

1B and S-VLAD2K-1B. Unfortunately, we were unable

to collect one billion images for the high-dimensional

VLAD dataset. Instead, we construct the synthetic one, S-

VLAD2K-1B, as described earlier. Table 2 show results

with different methods. In those large-scale experiments,

we used M=212, M=214, and M=214 for GIST384-80M,

SIFT-1B, and S-VLAD2K-1B, respectively. The results on

GIST384-80M and SIFT-1B have similar trends to their

corresponding 1M dataset. II+Ours identified more accu-

rate shortlists over II, and IMI+Ours provided a higher or

comparable accuracy with a faster performance compared

to IMI.

Note that our method works better with higher dimen-

sional data as shown in Fig. 3. In a similar trend, our

method tested with S-VLAD2K-1B outperformed the base-

lines, but its improvement looks marginal compared to re-

sults on VLAD2K-1M. We would like to point out that this

GIST384-80M

S.List.Size T 1K 5K 10K 50K 100K 500K 1M

II+Ours 0.053 / 0.91 0.134 / 0.93 0.195 / 0.96 0.412 / 1.15 0.534 / 1.29 0.805 / 2.71 0.890 / 4.48

II 0.009 / 0.76 0.043 / 0.77 0.081 / 0.80 0.276 / 0.92 0.397 / 1.12 0.721 / 2.56 0.837 / 4.23

IMI+Ours 0.087 / 2.42 0.210 / 2.28 0.307 / 2.39 0.571 / 2.79 0.705 / 3.01 0.928 / 7.01 0.976 / 11.7

IMI 0.066 / 2.77 0.184 / 2.81 0.270 / 2.89 0.533 / 3.33 0.658 / 3.90 0.890 / 9.12 0.949 / 15.0

SIFT-1B

S.List.Size T 1K 10K 50K 100K 500K 1M 10M

II+Ours 0.025 / 2.54 0.123 / 2.61 0.320 / 2.84 0.461 / 3.06 0.798 / 4.44 0.891 / 6.43 0.998 / 32.3

II 0.005 / 2.20 0.048 / 2.23 0.234 / 2.35 0.388 / 2.51 0.763 / 3.52 0.872 / 5.70 0.996 / 28.2

IMI+Ours 0.159 / 28.1 0.509 / 28.1 0.788 / 28.2 0.894 / 29.3 0.969 / 35.9 0.992 / 42.4 0.999 / 319

IMI 0.167 / 29.7 0.517 / 31.3 0.792 / 31.4 0.900 / 39.0 0.971 / 42.7 0.994 / 69.2 0.999 / 365

S-VLAD2K-1B

S.List.Size T 1K 10K 50K 100K 500K 1M 10M

II+Ours 0.001 / 15.4 0.004 / 15.7 0.013 / 16.0 0.019 / 16.6 0.054 / 17.4 0.082 / 18.8 0.298 / 43.4

II 0.000 / 15.1 0.001 / 15.2 0.004 / 15.5 0.009 / 16.3 0.034 / 16.9 0.057 / 17.5 0.242 / 40.3

IMI+Ours 0.002 / 35.3 0.010 / 35.7 0.031 / 36.9 0.045 / 42.4 0.129 / 50.6 0.182 / 58.7 0.506 / 288

IMI 0.001 / 45.2 0.009 / 46.9 0.027 / 47.1 0.040 / 51.5 0.109 / 60.6 0.158 / 63.8 0.461 / 304

Table 2. Experimental results on GIST384-80M, SIFT-1B, and S-VLAD2K-1B, when K = 100. In each cell, the first and second values

are a recall and computation time (in ms), respectively.

0

0.2

0.4

0.6

0.8

1

400 800 1600 3200 6400 12800 25600 51200 102400

R
ec

al
l

Shortlist Size (T)

II (8K)+Ours

II (2K)+Ours

II (1K)+Ours

II (8K)

II (2K)

II (1K)

(a) CNN-11M

0

0.2

0.4

0.6

0.8

1

800 1600 3200 6400 12800 25600 51200

R
ec

al
l

Shortlist Size (T)

Real, II+Ours

Real, II

Syn, II+Ours

Syn, II

(b) Real vs Synthetic VLAD

Figure 5. (a) This figure shows an experimental result on CNN-

11M dataset with three different numbers of inverted lists, when

K = 100. The number in brackets indicates the number of in-

verted lists M . Note that 1K is equal to 1024. (b) This fig-

ure shows the difference between real VLAD (VLAD2K-1M) and

synthetic VLAD (S-VLAD2K-1M).

is mainly due to the nature of the synthetic dataset, not a

scalability issue of our method. In order to explain this,

we provide an experimental support that shows the differ-

ence between real and synthetic data (Fig. 5(b)). As can

be seen, the performance improvement using our method

with a real 1 M dataset is much higher than that with a syn-

thetic 1 M dataset. Based on this support, we expect that our

method can provide higher improvements on a real dataset

compared with those observed with S-VLAD2K-1B.

Results with re-ranking: We report the results with re-

ranking in Fig. 6. In the experiments with re-ranking, we

utilized 64 bits OPQ codes [6] for all tested methods except

IVFADC [14] that uses PQ. Three methods based on the II

(II, II+Ours, IVFADC) use residual vectors. The results

confirm that for fixed encoding and shortlist size, shortlist

accuracy is pivotal to end-to-end retrieval accuracy.

0

0.2

0.4

0.6

0.8

1

100 500 1000 5000 10000

R
ec

al
l@

R

R

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
IVFADC

(a) GIST960-1M

0

0.2

0.4

0.6

0.8

1

100 500 1000 5000 10000

R
ec

al
l@

R

R

II+Ours
IMI+Ours
OIMI+Ours
II
IMI
OIMI
IVFADC

(b) VLAD8K-1M

Figure 6. Results with re-ranking when K = 100 and T = 12800.

6. Conclusion

We have presented a novel shortlist selection algorithm

for large-scale, high-dimensional approximate K-nearest

neighbor search. The proposed method utilizes the residual-

aware distance estimator that considers the residual dis-

tances of the data to their corresponding quantized cen-

troids. In order to efficiently select a given size of the short-

list, we proposed effective pre-computation schemes for the

inverted index and multi-index with a minor memory over-

head. We have tested the proposed algorithm combined

with the inverted index and inverted multi-index on large-

scale benchmarks, and found that our method significantly

improves the accuracy of shortlists over the prior methods

with comparable or lower computational costs.

Acknowledgements

We would like to thank anonymous reviewers for con-

structive comments. S.-E. Yoon is a corresponding au-

thor of the paper. This work was supported by MSIP/IITP

[R0126-16-1108], (MSIP) (No. 2013-067321, R0101-16-

0176).

References

[1] A. Babenko and V. Lempitsky. The inverted multi-index. In

CVPR, 2012. 1, 2, 4, 5, 6

[2] J. Brandt. Transform coding for fast approximate nearest

neighbor search in high dimensions. In CVPR, 2010. 2

[3] T. Cai, J. Fan, and T. Jiang. Distributions of angles in random

packing on spheres. JMLR, 2013. 3

[4] M. S. Charikar. Similarity estimation techniques from round-

ing algorithms. In STOC, 2002. 2

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm

for finding best matches in logarithmic expected time. ACM

TOMS, 3(3):209–226, 1977. 1

[6] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-

tization for approximate nearest neighbor search. In CVPR,

2013. 2, 8

[7] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-

zation. IEEE TPAMI, 2014. 2, 6

[8] Y. Gong and S. Lazebnik. Iterative quantization: a pro-

crustean approach to learning binary codes. In CVPR, 2011.

2

[9] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Com-

pact hashing with joint optimization of search accuracy and

time. In CVPR, 2011. 2

[10] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spher-

ical hashing. In CVPR, 2012. 2

[11] J.-P. Heo, Z. Lin, and S.-E. Yoon. Distance encoded product

quantization. In CVPR, 2014. 3

[12] P. Indyk and R. Motwani. Approximate nearest neighbors:

toward removing the curse of dimensionality. In STOC,

1998. 2

[13] M. Iwamura, T. Sato, and K. Kise. What is the most efficient

way to select nearest neighbor candidates for fast approxi-

mate nearest neighbor search? In ICCV, 2013. 2, 6

[14] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE TPAMI, 2011. 1, 2, 6, 8

[15] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating

local descriptors into a compact image representation. In

CVPR, pages 3304 –3311, 2010. 2, 6

[16] A. Joly and O. Buisson. Random maximum margin hashing.

In CVPR, 2011. 2

[17] Y. Kalantidis and Y. Avrithis. Locally optimized product

quantization for approximate nearest neighbor search. In

CVPR, 2014. 2

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2, 6

[19] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing for scalable image search. In ICCV, 2009. 2

[20] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 2

[21] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR, 2006. 1

[22] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,

2013. 2

[23] A. Oliva and A. Torralba. Modeling the shape of the scene:

a holistic representation of the spatial envelope. IJCV, 2001.

2

[24] C. Silpa-Anan, R. Hartley, S. Machines, and A. Canberra.

Optimised kd-trees for fast image descriptor matching. In

CVPR, 2008. 1

[25] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large

image databases for recognition. In CVPR, 2008. 6

[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, 2008. 2

[27] Y. Xia, K. He, F. Wen, and J. Sun. Joint inverted indexing.

In ICCV, 2013. 2

