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Abstract

Interactive fashion image manipulation, which enables
users to edit images with sketches and color strokes, is an
interesting research problem with great application value.
Existing works often treat it as a general inpainting task and
do not fully leverage the semantic structural information in
fashion images. Moreover, they directly utilize conventional
convolution and normalization layers to restore the incom-
plete image, which tends to wash away the sketch and color
information. In this paper, we propose a novel Fashion
Editing Generative Adversarial Network (FE-GAN), which
is capable of manipulating fashion images by free-form
sketches and sparse color strokes. FE-GAN consists of two
modules: 1) a free-form parsing network that learns to con-
trol the human parsing generation by manipulating sketch
and color; 2) a parsing-aware inpainting network that ren-
ders detailed textures with semantic guidance from the hu-
man parsing map. A new attention normalization layer is
further applied at multiple scales in the decoder of the in-
painting network to enhance the quality of the synthesized
image. Extensive experiments on high-resolution fashion
image datasets demonstrate that the proposed FE-GAN sig-
nificantly outperforms the state-of-the-art methods on fash-
ion image manipulation.

1. Introduction
Fashion image manipulation aims to generate high-

resolution realistic fashion images with user-provided
sketches and color strokes. It has huge potential values in
various applications. For example, a fashion designer can
easily edit clothing designs with different styles; filmmak-
ers can design characters by controlling the facial expres-
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sion, hairstyle, and body shape of the actor or actress. In
this paper, we propose FE-GAN, a fashion image manip-
ulation network that enables flexible and efficient user in-
teractions such as simple sketches and a few sparse color
strokes. Some interactive manipulation results of FE-GAN
are shown in Figure 1, which indicates that it can generate
realistic images with convincing and desired details.

In general, image manipulation has made great progress
due to the significant improvement of neural network tech-
niques [2, 6, 7, 14, 17, 21, 34]. However, previous methods
often treat it as an end-to-end one-stage image completion
problem without flexible user interactions [12, 16, 19, 20,
25, 31, 32]. Those methods usually do not explicitly esti-
mate and then leverage the semantic structural information
in the image. Furthermore, they excessively use the conven-
tional convolutional layers and batch normalization, which
significantly dissolve the sketch and color information from
the input during propagation. As a result, the generated im-
ages usually contain unrealistic artifacts and undesired tex-
tures.

To address the above challenges, we propose a novel
Fashion Editing Generative Adversarial Network (FE-
GAN), which consists of a free-form parsing network and a
parsing-aware inpainting network with multi-scale attention
normalization layers. Different from the previous methods,
we do not directly generate the complete image in one stage.
Instead, we first generate a complete parsing map from in-
complete inputs, and then render detailed textures on the
layout induced from the generated parsing map. Specifi-
cally, in the training stage, given an incomplete parsing map
obtained from the image, a sketch, sparse color strokes, a
binary mask, and a noise sampled from the Gaussian distri-
bution, the free-form parsing network learns to reconstruct
a complete human parsing map guided by the sketch and
color. A parsing-aware inpainting network then takes the



Figure 1. Some interactive results of our FE-GAN. The input contains free-form mask, sketch, and sparse color strokes. The resolution of
image is 320× 512. Please zoom in for better view.

generated parsing map, the incomplete image, and com-
posed masks as the input of encoders, and synthesizes the
final edited image. To better capture the sketch and color
information, we design an attention normalization layer,
which is able to learn an attention map to select more ef-
fective features conditioned on the sketch and color. The
attention normalization layer is inserted at multiple scales
in the decoder of the inpainting network. Moreover, we de-
velop a foreground-aware partial convolutional encoder for
the inpainting network that is only conditioned on the valid
pixels of the foreground, to enable more accurate and effi-
cient feature encoding from the image.

We conduct experiments on our newly collected fash-
ion dataset, named FashionE, and two challenging datasets:
DeepFashion [35] and MPV [4]. The results demonstrate
that incorporating the multi-scale attention normalization
layers and the free-form parsing network can help our FE-
GAN significantly outperforms the state-of-the-art meth-
ods on image manipulation, both qualitatively and quantita-
tively. The main contributions are summarized as follows:

• We propose a free-form parsing network that enables
users to control parsing generation flexibly by manip-
ulating the sketch and color.

• We develop a newly attention normalization for ex-
tracting features effectively based on a learned atten-

tion map.

• We design a parsing-aware inpainting network with
foreground-aware partial convolutional layers and
multi-scale attention normalization layers, which can
generate high-resolution realistic edited fashion im-
ages.

2. Related Work

Image Manipulation. Image manipulation with Gener-
ative Adversarial Networks (GANs) [6] is a popular topic
in computer vision, which includes image translation, im-
age completion, image editing, etc. Based on condi-
tional GANs [18], Pix2Pix [11] is proposed for image-to-
image translation. Targeting at synthesizing high-resolution
photo-realistic image, Pix2PixHD [27] comes up with a
novel framework with coarse-to-fine generators and multi-
scale discriminators. [22] design frameworks to re-
store low-resolution images with an original (square) mask,
which generate some artifacts when facing the free-form
mask and do not allow image editing. To make up for these
deficiencies, Deepfillv2 [12] utilizes a user’s sketch as in-
put and introduces a free-form mask to replace the original
mask. On top of Deepfillv2, Xiong et al. [30] further inves-
tigate a foreground-aware image inpainting approach that



Figure 2. The overview of our FE-GAN. We first feed the incomplete human parsing, sketch, noise, color, and mask into free-form parsing
network to obtain complete synthesized parsing. Then, incomplete image, composed mask, and synthesized parsing are fed into parsing-
aware inpainting network for manipulating the image by using the sketch and color.

disentangles structure inference and content completion ex-
plicitly. Faceshop [25] is a face editing system that takes
sketch and color as input. However, the synthesized image
would have blurry edges on the restored region, and it would
obtain undesirable result if too much area erased. Recently,
another face editing system SC-FEGAN [31] is proposed,
which generates high-quality images when users provide
the free-form as input. However, SC-FEGAN is designed
for face editing. In this paper, we propose a novel fashion
editing system conditioned on the sketch and sparse color,
utilizing feature involved in the parsing map, which is usu-
ally ignored by previous methods. Besides, we introduce
a novel multi-scale attention normalization to extract more
significant features conditioned on the sketch and color.

Normalization Layers. Normalization layers have be-
come an indispensable component in modern deep neural
networks. Batch Normalization (BN) used in Inception-
v2 network [9], making the training of deep neural net-
works easier. Other popular normalization layers, includ-
ing Instance Normalization (IN) [3], Layer Normalization
(LN) [13], Weight Normalization (WN) [24], Group Nor-

malization (GN) [33], are classified as unconditional nor-
malization layers because no external data is utilized dur-
ing normalization. In contrast to the above normalization
techniques, conditional normalization layers require exter-
nal data. Specifically, layer activations are first normalized
to zero mean and unit deviation. Then a learned affine trans-
formation is inferred from external data, which is utilized
to modulate the activation to denormalized the normalized
activations. The affine transformations are various among
different tasks. For style transfer tasks [26], affine parame-
ters are spatially-invariant since they only control the global
style of the output images. As for semantic image syn-
thesis tasks, SPADE [23] applies a spatially-varying affine
transformation to preserve the semantic information. But
for fashion editing, the sparse sketches and color strokes
will progressively disappear in deep SPADE blocks, since
the normalization tend to wash away those sparse features.
In this paper, we propose a novel normalization technique
named attention normalization layers. Instead of learning
the affine transformation directly, attention normalization
layers learn an attention map to extract significant informa-



tion from the normalization activations. Attention normal-
ization layer have a more compact structure and occupies
less computation resource.

3. Fashion Editing

We propose a novel method for editing fashion image, al-
lowing users to edit images with a few sketches and sparse
color strokes on an interested region. The overview of our
FE-GAN is shown in Figure 2. The main components of
our FE-GAN include a free-form parsing network and a
parsing-aware inpainting network with the multi-scale at-
tention normalization layers. We first discuss the free-form
parsing network. It can manipulate human parsing guided
by free-form sketch and color, and is crucial to help the
parsing-aware inpainting network produce convincing in-
teractive results. Then, we describe the attention normal-
ization layers inserted at multiple scales in the inpainting
decoder that can selectively extract effective features and
enhance visual quality. Finally, we give a detailed descrip-
tion of the learning objective function used in our FE-GAN.

3.1. Free-form Parsing Network

Compared to directly restoring an incomplete image,
predicting a parsing map from an incomplete parsing map
is more feasible since there are fewer details in the parsing
map. Meanwhile, the semantic information in the parsing
map can be a guidance for rendering detail textures in each
part of an image precisely. To this end, we propose a free-
form parsing network to synthesize a complete parsing map
when giving an incomplete parsing map and arbitrary sketch
and color strokes.

The architecture of the free-form parsing network is il-
lustrated in the upper left part of Figure 2. It is based on the
encoder-decoder architecture like U-net [21]. The encoder
receives five inputs: an incomplete parsing map, a binary
sketch that describes the structure of the removed region, a
noise sampled from the Gaussian distribution, sparse color
strokes and a mask. It is worth noting that given the same in-
complete parsing map and various sketch and color strokes,
the free-form parsing network can synthesize different pars-
ing map, which indicates that our parsing generation model
is controllable. It is significant for our fashion editing sys-
tem since different parsing maps guide to render different
contents in the edited image.

3.2. Parsing-aware Inpainting Network

The architecture of parsing-aware inpainting network is
illustrated on the bottom of Figure 2. Inspired by [16],
we introduce a partial convolution encoder to extract fea-
ture from the valid region in incomplete images. Instead of
using the mask directly, we utilize the composed mask to
make the network focus only on the foreground region. The

composed mask can be expressed as:

M ′ = (1−M)�Mforeground, (1)

where M ′, M and Mforeground are the composed mask, orig-
inal mask and foreground mask, respectively. � denotes
element-wise multiply. Besides the partial convolution en-
coder, we introduce a standard convolution encoder to ex-
tract semantics feature from the synthesized parsing map.
The human parsing map has semantics and location infor-
mation that will guide the inpainting, since the content in
a region with the same semantics should be similar. Given
the semantic features, the network can render textures on
the particular region more precisely. Two encoded feature
maps are concatenated together in a channel-wise manner.
Then the concatenated feature map undergoes several di-
lated residual blocks. During the upsampling process, well-
designed multi-scale attention normalization layers are in-
troduced to obtain attention maps, which are conditioned
on sketch and color strokes. The learned attention maps are
helpful to select more effective feature in the forward acti-
vations. We explain the details in the next section.

3.3. Attention Normalization Layers

Inspired by SPADE [23], we design a variant of condi-
tional normalization, named Attention Normalization Lay-
ers (ANLs). However, instead of inferring an affine trans-
formation from external data directly, ANLs learn an atten-
tion map which is used to extract the significant information
in the earlier normalized activation. The upper right part
of Figure 2 illustrates the design of ANLs. The details of
ANLs are shown below.

Let xi denotes the activations of the layer i in the deep
neural network. Let N denotes the number of samples in
one batch. Let Ci denotes the number of channels of xi.
Let Hi and W i represent the height and width of activation
map in layer i respectively. When the activations xi passing
through ANLs, they are first normalized in a channel-wise
manner. Then the normalized activations are modulated by
the learned attention map and bias. Finally, the modulated
activations pass through a rectified linear unit (RELU) and a
convolution layer and concatenate with the original normal-
ized activations. The activations value before the final con-
catenation at position (n ∈ N, c ∈ Ci, h ∈ Hi, w ∈W i) is
signed as:

f(αi
c,h,w(d)

xin,c,h,w − µi
c

σi
c

+ βi
c,h,w(d)), (2)

where f(x) denotes RELU and convolution operations,
xin,c,h,w is the activation value at particular position before
normalization, µi

c and σi
c are the mean and standard devia-

tion of activation in channel c. As the same of BN [9], we



Figure 3. Qualitative comparisons with Deepfill v1 [32], Partial Conv [16], and Edge-connect [19].

formulate them as:

µi
c =

1

NHiW i

∑
n,h,w

xin,c,h,w (3)

σi
c =

√
1

NHiW i

∑
n,h,w

(xin,c,h,w)
2 − (µi

c)
2 (4)

The αi
c,h,w(d) and βi

c,h,w(d) are learned attention map and
bias for modulating the normalization layer, which are con-
ditioned on the external data d, namely, the sketch and color
strokes and noise in this paper. Our implementations of
αi
n,h,w and βi

n,h,w are straightforward. The external data is
first projected into an embedding space through a convolu-
tion layer. Then the bias is produced by another convolution
layer, and the attention map is generated by a convolution
layer and a sigmoid operation, which limits the range of
feature map values between zero and one, and ensures the
output to be an attention map. The effectiveness of ANLs
is due to their inherent characteristics. Similar to SPADE
[23], ANLs also can avoid washing away semantic infor-
mation in activations, since the attention map and bias are
spatially-varying. Moreover, the multi-scale ANLs can not
only adapt the various scales of activations during upsam-
pling but also extract coarse-to-fine semantic information
from external data, which guide the fashion editing more
precisely.

3.4. Learning Objective Function

Due to the complex textures of the incomplete image
and the variety of sketch and color strokes, the training of
the free-form parsing network and parsing-aware inpainting
network is a challenging task. To address these problems,
we apply several losses to make the training easier and more
stable in different aspects. Specifically, we apply adversar-
ial loss Ladv [6], perceptual loss Lperceptual [14], style loss
Lstyle [14], parsing loss Lparsing [5], multi-scale feature loss

Lfeat [27], and total variation loss LTV [14] to regularize the
training. We define a face TV loss to remove the artifacts of
the face by using LTV on face region. We define a mask loss
by using the L1 norm on the mask area, let Igen be gener-
ated image, let Ireal be ground truth, and let M be the mask,
which is computed as:

Lmask = ||Igen �M − Ireal �M ||1, (5)

we also define a foreground loss to enhance the foreground
quality. Let Mforeground be the mask of foreground part, then
Lforeground can be formally computed as

Lforeground = ||Igen�Mforeground− Ireal�Mforeground||1, (6)

similar to Lforeground, we formulate a face loss Lface to im-
prove the quality of face region.

The overall objective function Lfree-form-parser for free-
form parsing network is formulated as:

Lfree-form-parser = γ1Lparsing + γ2Lfeat + γ3Ladv, (7)

where hyper-parameters γ1, γ2 and γ3 are weights of each
loss.

The overall objective functionLinpainter for parsing-aware
inpainting network written as:

Linpainter =λ1Lmask + λ2Lforeground + λ3Lface + λ4LfaceTV

+ λ5Lperceptual + λ6Lstyle + λ7Ladv,
(8)

where hyper-parameters λi, (i = 1, 2, 3, 4, 5, 6, 7) are the
weights of each loss.

4. Experiments
4.1. Datasets

We conduct our experiments on DeepFashion [35] from
Fashion Image Synthesis track. It contains 38,237 images
which are split into a train set and a test set, 29,958 and



Figure 4. Example of inputs. The inputs of the free-form parsing network consist of incomplete parsing, sketch, color, mask, and noise; the
inputs of parsing-aware inpainting network contain incomplete image, and composed mask. The inputs of attention normalization layers
are a sketch, color, and noise. We first generate the sketches by using Canny [1] shown in the third column of the first row. Then, we use a
human parser [5] to extract the median color of each part of the person, shown in the 5th column of the first row.

8,279 images, respectively. MPV [4] contains 35,687 im-
ages which are split into a train set and a test set, 29,469
and 6,218 samples. For better contributing to the fash-
ion editing community, we collected a new fashion dataset,
named FashionE. It contains 7,559 images with the size of
512 × 320. In our experiment, we split it into a train set of
6,106 images and a test set of 1,453 images. The dataset
will be released upon the publication of this work. The size
of the image is 512× 320 across all datasets.

We utilize the Irregular Mask Dataset provided by [16]
in our experiments. The original dataset contains 55,116
masks for training and 24,866 masks for testing. We ran-
domly select 12,000 images, splitting it into one train set of
9,600 masks and one test set of 2,400 masks. To mimic the
free-form color stroke, we utilize one irregular mask dataset
from [10] as Irregular Strokes Dataset. The mask region
stands for stroke in our experiment. In our experiment, we
split it into a train set of 50,000 masks and a test set of
10,000 masks. All the masks are resized to 512× 320.

4.2. Metrics

. We evaluate our proposed method, as well as compared
approaches on three metrics, PSNR (Peak Signal Noise
Ratio), SSIM (Structural Similarity index) [28], and FID
(Fréchet Inception Distance) [8]. We apply the Amazon

Mechanical Turk (AMT) for evaluating the qualitative re-
sults.

4.3. Implementation Details

Training Procedure. The training procedure is two-
stage. The first stage is to train free-form parsing network.
We use γ1 = 10, γ2 = 10, γ3 = 1 in the loss function. The
second stage is to train parsing-aware inpainting network.
We use λ1 = 5.0, λ2 = 50, λ3 = 1.0, λ4 = 0.1, λ5 = 0.05,
λ6 = 200, λ7 = 0.001 in the loss function. For both training
stages, we use Adam [15] optimizer with β1 = 0.5 and β2 =
0.999 and learning rate is 0.0002. The batch sizes of stage
1 is 20, and stage 2 is 8. In each training cycle, we train one
step for the generator and one step for the discriminator. All
the experiments are conducted on 4 Nvidia 1080 Ti GPUs.

Sketch & Color Domain. The way of extracting sketch
and color domain from images is similar to SC-FEGAN. In-
stead of using HED [29], we generated sketches by Canny
Edge Detector [1]. Relying on the result of human parsing,
we use the median color of each segmented area to repre-
sent the color of that area. More details are presented in Fig-
ure 4. As shown in Figure 1, all sketches inputs are drawn
by a human. The random mask crops the edges, colors, and
noise. Note that the inputs include a Gaussian noise, which
enhances the robustness of the model that allows to generate



Figure 5. Some interactive comparisons with Deepfill v1 [32], Partial Conv [16], and Edge-connect [19].

image with an actual sketch drawn.
Discriminators. The discriminator, used in free-form

parsing network, has a similar structure as the multi-scale
discriminator in Pixel2PixelHD [27], which has two Patch-
GAN discriminators. The discriminator, used in parsing-
aware inpainting network, has a similar structure as inpaint-
ing discriminator in Edge-connect [19], with five convolu-
tions and spectral norm blocks.

Compared Approaches. To make a comprehensive
evaluation of our proposed method, we conduct three com-
parison experiments based on the recent state of the art
approaches at image inpainting [32, 16, 19]. The re-
implementations followed the official source codes pro-
vided by authors and the same inputs to train the baselines.
To make a fair comparison, all inputs consist of incomplete
images, masks, sketch, color domain, and noise across all
comparison experiments.

4.4. Quantitative Results

PSNR computes the peak signal-to-noise ratio between
images. SSIM measures the similarity between two images.
Higher value of PSNR and SSIM mean better results. FID
is tended to replace Inception Score as one of the most sig-
nificant metrics measuring the quality of generated images.
It computes the Fréchet distance between two multivariate
Gaussians, the smaller the better. As mentioned in [28],

there is no good numerical metric in image inpainting. Fur-
thermore, our focus is even beyond the regular inpainting.
We can observe from Table 1, our FE-GAN achieves the
best PSNR, SSIM, and FID scores and outperforms all other
methods among three datasets.

4.5. Qualitative Results

Beyond numerical evaluation, we present visual compar-
isons for image completion task among three datasets and
four methods, shown in Figure 3. Three rows, from top
to bottom, are results from DeepFashion, MPV, and Fash-
ionE. The interactive results for those methods are shown
in Figure 5. The last column of the Figure 5, are the re-
sults of the free-form parsing network. We can observe that
the free-form parsing network can obtain promising pars-
ing results by manipulating the sketch and color. Thanks to
the multi-scale attention normalization layers and the syn-
thesized parsing result from the free-form parsing network,
our FE-GAN outperforms all other baselines on visual com-
parisons.

4.6. Human Evaluation

To further demonstrate the robustness of our proposed
FE-GAN, we conduct the human evaluation deployed on
the Amazon Mechanical Turk platform on the DeepFash-
ion [35], MPV [4], and FashionE. In each test, we provide



Table 1. Quantitative comparisons on DeepFashion [35], MPV [4], and FashionE datasets.

DeepFashion [35] MPV [4] FashionE

Model PSNR SSIM FID PSNR SSIM FID PSNR SSIM FID

Deepfill v1 [32] 16.885 0.781 60.994 18.450 0.808 58.742 19.170 0.814 56.738
Partial Conv [16] 19.103 0.827 17.728 20.408 0.850 22.751 20.635 0.848 20.148
Edge-connect [19] 26.236 0.901 12.633 27.557 0.924 7.888 29.154 0.926 5.182

FE-GAN (Ours) 29.552 0.928 3.700 30.602 0.944 3.796 30.974 0.938 3.246

Table 2. Human evaluation results of pairwise comparison with other methods.

Comparison Method Pair DeepFashion [35] MPV [4] FashionE

Ours vs Deepfill v1 [32] 0.849 vs 0.151 0.845 vs 0.155 0.857 vs 0.143
Ours vs Partial Conv [16] 0.917 vs 0.083 0.864 vs 0.136 0.799 vs 0.201
Ours vs Edge-connect [19] 0.790 vs 0.210 0.691 vs 0.309 0.656 vs 0.344

Table 3. Ablation studies on FashionE.
Method PSRN SSIM FID

Full 30.035 0.932 4.092
w/o attention norm 29.185 0.920 5.191
w/o parsing 29.109 0.923 5.355
w/o Lmask 28.813 0.921 4.773
w/o Lforeground 29.848 0.927 5.030

two images, one from compared methods, the other from
our proposed method. Workers are asked to choose the
more realistic image out of two. During the evaluation, K
images from each dataset are chosen, and n workers will
only evaluate these K images. In our case, K = 100 and
n = 10. We can observe from Table 2, our proposed method
has a superb performance over the other baselines. This
confirms the effectiveness of our FE-GAN comprised of
a free-form parsing network and a parsing-aware network,
which generates more realistic fashion images.

4.7. Ablation Study

To evaluate the impact of the proposed component of our
FE-GAN, we conduct an ablation study on FashionE with
using the model of 20 epochs. As shown in Table 3 , we
report the results of the different versions of our FE-GAN.
We first compare the results using attention normalization to
the results without using it. We can learn that incorporating
the attention normalization layers into the decoder of the
inpainting module significantly improves the performance
of image completion. We then verify the effectiveness of
the proposed free-from parsing network. From Table 3 , we
observe that the performance drops dramatically without us-
ing parsing, which can depict the human layouts for guiding
image manipulation with higher-level structure constraints.
Note that w/o attention norm denotes without attention nor-
malization layers of the proposed model. As shown in Ta-
ble 3, the results report that the main improved performance

achieved by the attention normalization and human parsing.
We also explore the impact of our designed objective func-
tion that each of the losses can substantially improve the
results. The ablation study on FashionE dataset that sug-
gests the proposed method has a superb performance over
other methods, and confirms the quality of the results.

5. Conclusion

In this paper, we propose a novel Fashion Editing Gener-
ative Adversarial Network (FE-GAN), which enables users
to manipulate the fashion image with an arbitrary sketch
and a few sparse color strokes. To achieve realistic inter-
active results, the FE-GAN incorporates a free-form pars-
ing network to predict the complete human parsing map to
guide fashion image manipulation, which is crucial to help
for producing convincing results. Moreover, we develop a
foreground-based partial convolutional encoder and design
an attention normalization layer which used in the multiple
scales layers of the decoder for the fashion editing network.
We construct a new dataset for the fashion editing task, cov-
ering person images with more challenging styles. Exten-
sive experiments on three fashion datasets demonstrate that
our FE-GAN outperforms the state-of-the-art methods and
achieves high-quality performance with convincing details
by controlling the sketch and color strokes.
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