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Abstract. We aim to model the top-down attention of a Convolutional
Neural Network (CNN) classifier for generating task-specific attention
maps. Inspired by a top-down human visual attention model, we pro-
pose a new backpropagation scheme, called Excitation Backprop, to pass
along top-down signals downwards in the network hierarchy via a proba-
bilistic Winner-Take-All process. Furthermore, we introduce the concept
of contrastive attention to make the top-down attention maps more dis-
criminative. In experiments, we demonstrate the accuracy and generaliz-
ability of our method in weakly supervised localization tasks on the MS
COCO, PASCAL VOC07 and ImageNet datasets. The usefulness of our
method is further validated in the text-to-region association task. On the
Flickr30k Entities dataset, we achieve promising performance in phrase
localization by leveraging the top-down attention of a CNN model that
has been trained on weakly labeled web images.

1 Introduction

Top-down task-driven attention is an important mechanism for efficient visual
search. Various top-down attention models have been proposed, e.g. [1–4]. Among
them, the Selective Tuning attention model [3] provides a biologically plausible
formulation. Assuming a pyramidal neural network for visual processing, the Se-
lective Tuning model is composed of a bottom-up sweep of the network to process
input stimuli, and a top-down Winner-Take-ALL (WTA) process to localize the
most relevant neurons in the network for a given top-down signal.

Inspired by the Selective Tuning model, we propose a top-down attention
formulation for modern CNN classifiers. Instead of the deterministic WTA pro-
cess used in [3], which can only generate binary attention maps, we formulate
the top-down attention of a CNN classifier as a probabilistic WTA process.

The probabilistic WTA formulation is realized by a novel backpropagation
scheme, called Excitation Backprop, which integrates both top-down and bottom-
up information to compute the winning probability of each neuron efficiently.
Interpretable attention maps can be generated by Excitation Backprop at in-
termediate convolutional layers, thus avoiding the need to perform a complete
backward sweep. We further introduce the concept of contrastive top-down at-
tention, which captures the differential effect between a pair of contrastive top-
down signals. The contrastive top-down attention can significantly improve the
discriminativeness of the generated attention maps.
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Fig. 1. A CNN classifier’s top-down attention maps generated by our Excitation Back-
prop can localize common object categories, e.g. chair and glass, as well as fine-
grained categories like boy, man and woman in this example image, which is resized to
224×224 for our method. The classifier used in this example is trained to predict ∼18K
tags using only weakly labeled web images. Visualizing the classifier’s top-down atten-
tion can also help interpret what has been learned by the classifier. For couple, we can
tell that our classifier uses the two adults in the image as the evidence, while for father,
it mostly concentrates on the child. This indicates that the classifier’s understanding
of father may strongly relate to the presence of a child.

In experiments, our method achieves superior weakly supervised localization
performance vs. [5–9] on challenging datasets such as PASCAL VOC [10] and
MS COCO [11]. We further explore the scalability of our method for localizing a
large number of visual concepts. For this purpose, we train a CNN tag classifier
to predict ∼18K tags using 6M weakly labeled web images. By leveraging our
top-down attention model, our image tag classifier can be used to localize a
variety of visual concepts. Moreover, our method can also help to understand
what has been learned by our tag classifier. Some examples are shown in Fig. 1.

The performance of our large-scale tag localization method is evaluated on
the challenging Flickr30k Entities dataset [12]. Without using a language model
or any localization supervision, our top-down attention based approach achieves
competitive phrase-to-region performance vs. a fully-supervised baseline [12].

To summarize, the main contributions of this paper are:

– a top-down attention model for CNN based on a probabilistic Winner-Take-
All process using a novel Excitation Backprop scheme;

– a contrastive top-down attention formulation for enhancing the discrimina-
tiveness of attention maps; and

– a large-scale empirical exploration of weakly supervised text-to-region asso-
ciation by leveraging the top-down neural attention model.

2 Related Work

There is a rich literature about modeling the top-down influences on selective
attention in the human visual system (see [13] for a review). It is hypothesized
that top-down factors like knowledge, expectations and behavioral goals can
affect the feature and location expectancy in visual processing [4, 14, 1, 15], and
bias the competition among the neurons [16, 3, 15, 17, 18]. Our attention model
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is related to the Selective Tuning model of [3], which proposes a biologically
inspired attention model using a top-down WTA inference process.

Various methods have been proposed for grounding a CNN classifier’s pre-
diction [5–8, 19, 9]. In [5, 6, 20], error backpropagation based methods are used
for visualizing relevant regions for a predicted class or the activation of a hidden
neuron. Recently, a layer-wise relevance backpropagation method is proposed by
[9] to provide a pixel-level explanation of CNNs’ classification decisions. Cao et
al. [7] propose a feedback CNN architecture for capturing the top-down atten-
tion mechanism that can successfully identify task relevant regions. In [19], it is
shown that replacing fully-connected layers with an average pooling layer can
help generate coarse class activation maps that highlight task relevant regions.
Unlike these previous methods, our top-down attention model is based on the
WTA principle, and has an interpretable probabilistic formulation. Our method
is also conceptually simpler than [7, 19] as we do not require modifying a net-
work’s architecture or additional training. The ultimate goal of our method goes
beyond visualization and explanation of a classifier’s decision [6, 20, 9], as we
aim to maneuver CNNs’ top-down attention to generate highly discriminative
attention maps for the benefits of localization.

Training CNN models for weakly supervised localization has been studied by
[21–25]. In [21, 25, 24], a CNN model is transformed into a fully convolutional
net to perform efficient sliding window inference, and then Multiple Instance
Learning (MIL) is integrated in the training process through various pooling
methods over the confidence score map. Due to the large receptive field and stride
of the output layer, the resultant score maps only provide very coarse location
information. To overcome this issue, a variety of strategies, e.g. image re-scaling
and shifting, have been proposed to increase the granularity of the score maps
[21, 24, 26]. Image and object priors are also leveraged to improve the object
localization accuracy in [22–24]. Compared with weakly supervised localization,
the problem setting of our task is essentially different. We assume a pre-trained
deep CNN model is given, which may not use any dedicated training process
or model architecture for the purpose of localization. Our focus, instead, is to
model the top-down attention mechanism of generic CNN models to produce
interpretable and useful task-relevant attention maps.

3 Method

3.1 Top-down Neural Attention based on Probabilistic WTA

We consider a generic feedforward neural network model. The goal of a top-down
attention model is to identify the task-relevant neurons in the network.

Given a selected output unit, a deterministic top-down WTA scheme is used
in the biologically inspired Selective Tuning model [3] to localize the most rel-
evant neurons in the processing cone (see Fig. 2 (a)) and generate a binary
attention map. Inspired by the deterministic WTA, we propose a probabilistic
WTA formulation to model a neural network’s top-down attention (Fig. 2 (b)
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Fig. 2. Deterministic WTA [3] vs. our probabilistic WTA for modeling top-down atten-
tion. (a) Given a selected output unit, the red dots denote the winners identified by the
top-down layer-wise deterministic WTA scheme in the processing cone, and the cyan
ones are inhibited. (b) In our probabilistic WTA scheme, winner neurons are generated
by a stochastic sampling process (shown in (c)). The top-down signal is specified by
a probability distribution over the output units. The shading of a dot in (b) indicates
the its relative likelihood of winning against the other ones in the same layer.

and (c)), which leverages more information in the network and generates soft
attention maps that can capture subtle differences between top-down signals.
This is critical to our contrastive attention formulation in Sec. 3.3.

In our formulation, the top-down signal is specified by a prior distribution
P (A0) over the output units, which can model the uncertainty in the top-down
control process. Then the winner neurons are recursively sampled in a top-
down fashion based on a conditional winning probability P (At|At−1), where
At, At−1 ∈ N denote the selected winner neuron at the current and the previous
step respectively, and N is the overall neuron set. We formulate the top-down
relevance of each neuron as its probability of being selected as a winner in this
process. Formally, given a neuron ai ∈ N (note that ai denotes a specific neu-
ron and At denotes a variable over the neurons), we would like to compute its
Marginal Winning Probability (MWP) P (ai). The MWP P (ai) can be factorized
as

P (ai) =
∑
aj∈Pi

P (ai|aj)P (aj), (1)

where Pi is the parent node set of ai (in top-down order). As Eqn. 1 indicates,
given P (ai|aj), P (ai) is a function of the marginal winning probability of the
parent nodes in the preceding layers. It follows that P (ai) can be computed in
a top-down layer-wise fashion.

Our formulation is equivalent to an absorbing Markov chain process [27] with
pij := P (ai|aj) as the transition probability and neurons at the network bottom
as the absorbing nodes. P (ai) can then be interpreted as the expected number of
visits when a walker randomly starts from a node in the output layer according
to P (A0). This expected number of visits can be computed by a simple matrix
multiplication using the fundamental matrix of the absorbing Markov chain [27].
(Detailed explanation can be found in the supplementary material.) In this light,
the MWP P (ai) is a linear function of the the top-down signal P (A0), which
will be shown to be convenient later (see Sec. 3.3).
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Fig. 3. Example Marginal Winning Probability (MWP) maps computed via Excitation
Backprop from different layers of the public VGG16 model [29] trained on ImageNet.
The input image is shown on the right. The MWP maps are generated for the category
tabby cat. Neurons at higher-level layers have larger receptive fields and strides. Thus,
they can capture larger areas but with lower spatial accuracy. Neurons at lower layers
tend to more precisely localize features at smaller scale.

3.2 Excitation Backprop

In this section, we propose the Excitation Backprop method to realize the prob-
abilistic WTA formulation for modern CNN models.

A modern CNN model [28–30] is mostly composed of a basic type of neuron
aj , whose response is computed by âj = ϕ(

∑
i wij âi+bi). Here wij is the weight,

âi is the input, bi is the bias and ϕ is the nonlinear activation function. We call
this type of neuron an Activation Neuron. We have the following assumptions
about the activation neurons.

A1. The response of the activation neuron is non-negative.
A2. An activation neuron is tuned to detect certain visual features. Its response

is positively correlated to its confidence of the detection.

A1 holds for a majority of the modern CNN models, as they adopt the Rec-
tified Linear Unit (ReLU) as the activation function1. A2 has been empirically
verified by many recent works [19, 6, 31, 32]. It is observed that neurons at lower
layers detect simple features like edge and color, while neurons at higher layers
can detect complex features like objects and body parts.

Between activation neurons, we define a connection to be excitatory if its
weight is non-negative, and inhibitory otherwise. Our Excitation Backprop passes
top-down signals through excitatory connections between activation neurons.
Formally, let Cj denote the child node set of aj (in the top-down order). For
each ai ∈ Cj , the conditional winning probability P (ai|aj) is defined as

P (ai|aj) =

{
Zj âiwij if wij ≥ 0,

0 otherwise.
(2)

Zj = 1/
∑
i:wij≥0 âiwij is a normalization factor so that

∑
ai∈Cj P (ai|aj) = 1.

In the special case when
∑
i:wij≥0 âiwij = 0, we define Zi to be 0. Note that the

formulation of P (ai|aj) is valid due to A1, since âi is always non-negative.
Eqn. 2 assumes that if aj is a winner neuron, the next winner neuron will

be sampled among its child node set Cj based on the connection weight wij and

1 We discuss some exceptions and the remedies in the supplementary material.
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Fig. 4. Marginal Winning Probability (MWP) vs. contrastive MWP (c-MWP). The
input image is resized to 224×224, and we use GoogleNet pretrained on ImageNet to
generate the MWP maps and c-MWP maps for “zebra” and “elephant”. The MWP
map for “elephant” does not successfully suppress the zebra. In contrast, by cancelling
out common winner neurons for “elephant” and “non-elephant”, the c-MWP map more
effectively highlights the elephant.

the input neuron’s response âi. The weight wij captures the top-down feature
expectancy, while âi represents the bottom-up feature strength, as assumed in
A2. Due to A1, child neurons of aj with negative connection weights always
have an inhibitory effect on aj , and thus are excluded from the competition.

Eqn. 2 recursively propagates the top-down signal layer by layer, and we
can compute attention maps from any intermediate convolutional layer. For our
method, we simply take the sum across channels to generate a marginal winning
probability (MWP) map as our attention map, which is a 2D probability his-
togram. Fig. 3 shows some example MWP maps generated using the pre-trained
VGG16 model [29]. Neurons at higher-level layers have larger receptive fields and
strides. Thus, they can capture larger areas but with lower spatial accuracy.
Neurons at lower layers tend to more precisely localize features at smaller scales.

3.3 Contrastive Top-down Attention

Since the MWP is a linear function of the top-down signal (see Sec. 3.1), we can
compute any linear combination of MWP maps for an image by a single backward
pass. All we need to do is linearly combine the top-down signal vectors at the
top layer before performing the Excitation Backprop. In this section, we take
advantage of this property to generate highly discriminative top-down attention
maps by passing down pairs of contrastive signals.

For each output unit oi, we virtually construct a dual unit ōi, whose in-
put weights are the negation of those of oi. For example, if an output unit
corresponds to an elephant classifier, then its dual unit will correspond to a
non-elephant classifier. Subtracting the MWP map for non-elephant from the
one for elephant will cancel out common winner neurons and amplify the dis-
criminative neurons for elephant. We call the resulting map a contrastive MWP
map, which can be computed by a single backward pass. More details can be
found in our supplementary material. In practice we weight the target unit and
its dual equally, and truncate the contrastive MWP map at zero so that only
positive parts are kept. Our probabilistic formulation ensures that there are al-
ways some positive parts on the contrastive MWP map, unless the MWP map
and its dual are identical. Fig. 4 shows some examples.
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4 Experiments

We implement Excitation Backprop in Caffe [33] (available at our project web-
site2). Implementation details are included in our supplementary material.

4.1 The Pointing Game

The goal of this section is to evaluate the discriminativeness of different top-
down attention maps for localizing target objects in crowded visual scenes.

Evaluation setting. Given a pre-trained CNN classifier, we test different
methods in generating a top-down attention map for a target object category
present in an image. Ground truth object labels are used to cue the method. We
extract the maximum point on the top-down attention map. A hit is counted
if the maximum point lies on one of the annotated instances of the cued object
category, otherwise a miss is counted. We measure the localization accuracy
by Acc = #Hits

#Hits+#Misses for each object category. The overall performance is
measured by the mean accuracy across different categories.

We call this the Pointing Game, as it asks the CNN model to point at an
object of designated category in the image. The pointing game does not re-
quire highlighting the full extent of an object, and it does not account for the
CNN model’s classification accuracy. Therefore, it purely compares the spatial
selectiveness of the top-down attention maps. Moreover, the pointing game only
involves minimum post-processing of the attention maps, so it can evaluate dif-
ferent types of attention maps more fairly.

Datasets. We use the test split of the PASCAL VOC07 dataset [10] (4952
images) and the validation split of the MS COCO dataset [11] (40137 images).
In particular, COCO contains 80 object categories, and many of its images
have multiple object categories, making even the simple Pointing Game rather
challenging. To evaluate success in the Pointing Game, we use the groundtruth
bounding boxes for VOC07 and the provided segmentation masks for COCO.

CNN classifiers. We consider three popular CNN architectures: CNN-S [34]
(an improved version of AlexNet [28]), VGG16 [29], and GoogleNet [30]. These
models vary a lot in depth and structure. We download these models from the
Caffe Model Zoo website [35]. These models are pre-trained on ImageNet [36].
For both VOC07 and COCO, we use the training split to fine-tune each model.
We follow the basic training procedure for image classification, and thus no
multi-scale training is used. Only the output layer is fine-tuned using the multi-
label cross-entropy loss for simplicity, since the classification accuracy is not our
focus. More details are included in our supplementary material.

Test methods. We compare Excitation Backprop (MWP and c-MWP) with
the following methods: (Grad) the error backprogation method [5], (Deconv) the
deconvolution method originally designed for internal neuron visualization [6],
(LRP) layer-wise relevance propagation [9], and (CAM) the class activation map
method [8]. We implement Grad, Deconv and CAM in Caffe. For Deconv, we

2 http://www.cs.bu.edu/groups/ivc/excitation-backprop
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use an improved version proposed in [20], which generates better maps than the
original version [6]. For Grad and Deconv, we follow [5] to use the maximum
absolute value across color channels to generate the final attention map. Taking
the mean instead of maximum will degrade their performance. For LRP, we use
the software provided by the authors, which only supports CPU computation.
For VGG16, this software can take 30s to generate an attention map on an Intel
Xeon 2.90GHz×6 machine3. Due to limited computational resources, we only
evaluate LRP for CNN-S and GoogleNet.

Note that CAM is only applicable to certain architectures like GoogleNet,
which do not have fully connected layers. At test time, it acts like a fully convolu-
tional model to perform dense sliding window evaluation [21, 37]. Therefore, the
comparison with CAM encompasses the comparison with the dense evaluation
approach for weakly supervised localization [21].

To generate the full attention maps for images of arbitrary aspect ratios, we
convert each testing CNN classifier to a fully convolutional architecture as in
[21]. All the compared methods can be easily extended to fully convolutional
models. In particular, for Excitation Backprop, Grad and Deconv, the output
confidence map of the target category is used as the top-down signal to capture
the spatial weighting. However, all input images are resized to 224 in the smaller
dimension, and no multi-scale processing is used.

For different CNN classifiers, we empirically select different layers to compute
our attention maps based on a held-out set. We use the conv5 layer for CNN-S,
pool4 for VGG16 and pool2 for GoogleNet. We use bicubic interpolation to up-
sample the generated attention maps. The effect of the layer selection will be
analysed below. For Grad, Deconv and LRP we blur their maps by a Gaussian
kernel with σ = 0.02 · max{W,H}, which slightly improves their performance
since their maps tend to be sparse and noisy at the pixel level. In the evaluation,
we expand the groundtruth region by a tolerance margin of 15 pixels, so that
the attention maps produced by CAM, which are only 7 pixels in the shortest
dimension, can be more fairly compared.

Results. The results are reported in Table 1. As the pointing game is trivial
for images with large dominant objects, we also report the performance on a
difficult subset of images for each category. The difficult set includes images that
meet two criteria: 1) the total area of bounding boxes (or segments in COCO)
of the testing category is smaller than 1/4 the size of the image and 2) there is
at least one other distracter category in the image.

Our c-MWP consistently outperforms the other methods on both VOC07 and
COCO across different CNN models. c-MWP is also substantially better than
MWP, which validates the idea of contrastive attention. GoogleNet provides
the best localization performance for different methods, which is also observed
by [7, 8]. Using GoogleNet, our c-MWP outperforms the second best method
by about 10 percentage points on the difficult sets of VOC07 and COCO. In
particular, our c-MWP gives the best performance in 69/80 object categories of

3 On COCO, we need to compute about 116K attention maps, which leads to over
950 hours of computation on a single machine for LRP using VGG16.
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Table 1. Mean accuracy (%) in the Pointing Game. For each method, we report two
scores for the overall test set and a difficult subset respectively. Center is the baseline
that points at image center. The second best score of each column is underlined.

VOC07 Test (All/Diff.) COCO Val. (All/Diff.)

CNN-S VGG16 GoogleNet CNN-S VGG16 GoogleNet

Center 69.5/42.6 69.5/42.6 69.5/42.6 27.7/19.4 27.7/19.4 27.7/19.4

Grad [5] 78.6/59.8 76.0/56.8 79.3/61.4 38.7/30.1 37.1/30.7 42.6/36.3
Deconv [6] 73.1/45.9 75.5/52.8 74.3/49.4 36.4/28.4 38.6/30.8 35.7/27.9

LRP [9] 68.1/41.3 - 72.8/50.2 32.5/24.0 - 40.2/32.7
CAM [8] - - 80.8/61.9 - - 41.6/35.0

MWP 73.7/52.9 76.9/55.1 79.3/60.4 35.0/27.7 39.5/32.5 43.6/37.1
c-MWP 78.7/61.7 80.0/66.8 85.1/72.3 43.0/37.0 49.6/44.2 53.8/48.3
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Fig. 5. Example attention maps using GoogleNet. For visualization, the maps are
superimposed on the images after some postprocessing (slight blur for Grad and thresh-
olding for CAM). (Top two rows) Our c-MWP is very discriminative and can often lo-
calize challengingly small objects like frisbee, stop sign and fire hydrant. (Bottom
row) Two typical failure cases of top-down neural attention are shown. Since faucet

often co-occurs with sink, the CNN’s attention falsely focuses on the faucet in the
image. It is the same case for ski poles and skis.

COCO, especially for small objects like remote, tie and baseball bat (see our
supplementary material).

Example attention maps are shown in Fig. 5. As we can see, our c-MWP
maps can accurately localize the cued objects in rather challenging scenes. More
examples are included in our supplementary material.

Layer selection effects. We use GoogleNet to analyze the effects of layer
selection. For a comparison, we also report the performance of Grad and De-
conv by taking the maximum gradient magnitude across feature map channels
in the intermediate layers. Results are reported in Fig. 6. We choose three inter-
mediate layers in GoogleNet: pool1, pool3 and Inception 5b/output (I5b/out),
whose spatial resolutions are 56, 14 and 7 in the shortest dimension respectively.
Performance does not vary much across all methods at the chosen layers except
I5b/out. Our c-MWP only gets a slight decrease in accuracy (mainly due to the
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Fig. 6. Effects of layer selection on VOC07 difficult set. (Left) For Grad, Deconv
and our c-MWP, we compare their attention maps from three different layers in the
GoogleNet. At I5b/out, Grad and Deconv fail to generate meaningful attention maps,
while our method can still achieve reasonable accuracy. (Right) We show example at-
tention maps by our c-MWP and Grad from the I5b/out layer.

Table 2. Analysis of contrastive attention on VOC07 difficult set using GoogleNet.
We evaluate two variants of Excitation Backprop for the contrastive attention map
computation compared with our full model. We also test the contrastive attention idea
for Grad, Deconv and CAM and their original scores are shown in brackets. See text
for details.

Excitation Backprop Other Methods

full post-norm w/o norm c-Grad c-Deconv c-CAM
Mean Acc. (%) 70.6 58.1 41.6 N.A. 67.7 (49.4) 61.9 (61.9)

map’s low spatial resolution), while Grad and Deconv do not generate meaning-
ful attention maps (see Fig. 6). This is because the attention maps of Grad and
Deconv at I5b/out are not conditioned on the activation values of I5b/out, and
thus fail to leverage the spatial information captured by I5b/out.

Analysis of contrastive top-down attention. The proposed contrastive
attention is conceptually simple, which basically subtracts one attention map
from its dual using the virtual contrastive output unit. We test this idea for
Grad, Deconv and CAM and the performance is reported in Table 2. For Grad,
the gradient magnitude map is identical to its dual since the gradients of the dual
map are just the negation of the reference map. As a result, the subtraction gives
a zero map. For CAM, the performance remains the same because the dual map
is again a negation of the reference attention map and the maximum point will
not be changed by the subtraction. However, the proposed contrastive attention
works for Deconv, when the attention map and its dual are L1-normalized before
subtraction. Deconv shares a similar spirit of our method as it discards nega-
tive/inhibitatory signals by thresholding at ReLU layers, but it also introduces
non-linearity in the propagation process. Therefore, it requires two backward
passes and proper normalization, while our method can directly propagate the
contrastive signal via a single pass and achieves better performance.

Our probabilistic WTA formulation produces well-normalized attention maps
that enable direct subtraction. We report the performance of two variants of our
method in Table 2. We remove the normalization factor Zi in Eqn. 2 and pass
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Table 3. Bounding box localization error on ImagNet Val. using GoogleNet. ∗The
score of Feedback is from the original paper.

Grad [5] Deconv [6] LRP [9] CAM [8] Feedback∗ [7] c-MWP MWP
Opt. α 5.0 4.5 1.0 1.0 - 0.0 1.5

Loc. Error (%) 41.6 41.6 57.8 48.1 38.8 57.0 38.7

down the contrastive signal. This leads to a significant degradation in perfor-
mance (w/o norm). Then we compute the attention map and its dual separately
and do the subtraction after L1-normalization (post-norm). The performance is
improved but still substantially lower than our full method. This analysis further
confirms the importance of our probabilistic formulation.

4.2 Localizing Dominant Objects

We now turn to a different evaluation setting [7]. The goal of this setting is
bounding box (bbox) localization of dominant objects in the image.

Dataset and evaluation. We follow the protocol of Feedback Net [7] for a
fair comparison. The test is performed on the ImageNet Val. set (∼50K images),
where each image has a label representing the category of dominant objects in
it. The label is given, so the evaluation is based on the localization error rate
with an IOU threshold at 0.5. Images are resized to 224×224.

As in [7], simple thresholding is used to extract a bbox from an attention
map. We set the threshold τ = αµI , where µI is the mean value of the map.
Then the tightest bbox covering the white pixels is extracted. The parameter α
is optimized in the range [0 : 0.5 : 10] for each method on a held out set.

Results. Table 3 reports the results based on the same GoogleNet model
obtained from Caffe Model Zoo [35] as in [7]. We find that c-MWP performs
poorly, but our MWP obtains competitive results against Feedback and other
methods. Compared with Feedback, our method is conceptually much simpler.
Feedback requires modification of a CNN’s architecture and needs 10-50 itera-
tions of forward-backward passes for computing an attention map.

Note that this task favors attention maps that fully cover the dominant ob-
ject in an image. Thus, it is very different from the Pointing Game, which favors
discriminativeness instead. Our c-MWP usually only highlights the most discrim-
inative part of an object due to the competition between the contrastive pair of
top-down signals. This experiment highlights the versatility of our method, and
the value of the non-contrastive version (MWP) for dominant object localization.

4.3 Text-to-Region Association

Text-to-region association in unconstrained images [12] is very challenging com-
pared to the object detection task, due to the lack of fully-annotated datasets
and the large number of words/phrases used in the natural language. Moreover,
an image region can be referred to by potentially many different words/phrases,
which further increases the complexity of the fully-supervised approach.
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By leveraging the top-down attention of a CNN image tag classifier, we pro-
pose a highly scalable approach to weakly supervised word-to-region association.
We train an image tag classifier using ∼6M weakly labeled thumbnail images col-
lected from a commercial stock image website4 (Stock6M). Each image is 200-
pixels in the longest dimension and comes with about 30-50 user tags. These tags
cover a wide range of concepts, including objects, scenes, body parts, attributes,
activities, and abstract concepts, but are also very noisy. We picked ∼18K most
frequent tags for our dictionary. We empirically found that the first few tags of
each image are usually more relevant, and consequently use only the first 5 tags
of an image in the training.

Tag classifier training. We use the pre-trained GoogleNet model from
Caffe Model Zoo, and fine-tune the model using the multi-label cross-entropy
objective function for the 18K tags. Images are padded to square shape by mirror
padding and upsampled to 256×256. Random flipping and cropping are used for
data augmentation. We use SGD with a batch size of 64 and a starting learning
rate of 0.01. The learning rate is lowered by a factor of 0.1 when the validation
error plateaus. The training process passes through the data for three epochs
and takes ∼55 hours on an NVIDIA K40c GPU.

Dataset and evaluation. To quantitatively evaluate our top-down atten-
tion method and the baselines in text-to-region association, we use the recently
proposed Flickr30k Entities (Flickr30k) dataset [12]. Evaluation is performed on
the test split of Flickr30k (1000 images), where every image has five sentential
descriptions. Each Noun Phrase (NP) in a sentence is manually associated with
the bounding box (bbox) regions it refers to in the image. NPs are grouped into
eight types (see [12]). Given an NP, the task is to provide a list of scored bboxes,
which will be measured by the recall rate (similar to the object proposal metric)
or per-group/per-phrase Average Precision (AP) (similar to the object detection
metric). We use the evaluation code from [12].

To generate scored bboxes for an NP, we first compute the word attention
map for each word in the NP using our tag classifier. Images are resized to 300
pixels in the shortest dimension to better localize small objects. Then we simply
average the word attention maps to get an NP attention map. Advanced language
models can be used for better fusing the word attention maps, but we adopt
the simplest fusion scheme to demonstrate the effectiveness of our top-down
attention model. We skip a small proportion of words that are not covered by
our 18K dictionary. MCG [38] is used to generate 500 segment proposals, which
are re-scored based on the phrase attention map. The re-scored segments are
then converted to bboxes, and redundant bboxes are removed via Non-maximum
Suppression using the IOU threshold of 0.7.

The segment scoring function is defined as f(R) = SR/A
γ
R where SR is the

sum of the values inside the segment proposal R on the given attention map
and AR is the segment’s area. The parameter γ is to control the penalty of the
segment’s area, which is optimized for each method in the range [0 : 0.25 : 1].

4 https://stock.adobe.com
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Table 4. Performance comparison on the Flickr30k Entities dataset. We report per-
formance for both the whole dataset and a subset of small instances. The R@N refers
to the overall recall rate regardless of phrase types. mAP (Group) and mAP (Phrase)
should be interpreted differently, because most phrases belong to the group people.
CCA∗ refers to the precomputed results provided by [12], while CCA is the result
reported in the original paper. MCG base is the performance using MCG’s original
proposal scores. EB is EdgeBoxes [39].

opt. γ R@1 R@5 R@10 mAP (Group) mAP (Phrase)
MCG base – 10.7/ 7.7 30.3/22.4 40.5/30.3 6.9/ 4.5 16.8/12.9

Grad (MCG) 0.50 24.3/ 7.6 49.6/32.9 59.7/45.8 10.2/ 3.8 28.8/15.6
Deconv (MCG) 0.50 21.5/11.3 48.4/34.5 58.5/46.0 10.0/ 4.0 26.5/16.7

LRP (MCG) 0.50 24.3/11.8 51.6/36.8 61.3/48.5 10.3/ 4.3 28.9/18.1
CAM (MCG) 0.75 21.7/ 6.5 47.1/27.9 56.1/39.1 7.5/ 2.0 26.0/11.9
MWP (MCG) 0.50 28.5/15.0 52.7/39.1 61.3/49.8 11.8/ 5.3 31.1/20.3

c-MWP (MCG) 0.50 26.2/21.2 54.3/43.4 62.2/51.7 15.2/10.8 30.8/24.0

CCA∗ [12] (EB) – 25.2/21.8 50.3/41.0 58.1/47.3 12.8/11.5 28.8/23.6
CCA [12] (EB) – 25.3/ – – 59.7/ – 11.2/ – –

c-MWP (EB) 0.25 27.0/18.4 49.9/35.2 57.7/43.9 13.2/ 8.1 29.4/20.0

Table 5. Per group recall@5 (%) on the Flickr30k Entities dataset. The mean scores
are computed over different group types, which are different from the overall recall
rates reported in Table 4.

people clothing bodypart animal vehicle instrument scene other mean
MCG base 36.1 30.1 9.9 50.8 37.8 26.5 31.5 19.1 30.3

Grad (MCG) 65.0 32.4 14.0 70.1 63.0 40.7 58.8 32.5 47.1
Deconv (MCG) 65.4 31.6 18.7 67.0 64.0 46.9 53.6 28.9 47.0

LRN (MCG) 64.6 37.7 16.4 62.9 63.5 45.7 59.4 37.9 48.5
CAM (MCG) 60.5 28.4 9.6 57.0 57.5 37.0 64.4 32.7 43.4
MWP (MCG) 68.6 37.7 16.1 68.7 66.3 53.7 54.5 36.8 50.3

c-MWP (MCG) 63.5 47.6 24.5 69.9 72.0 54.3 61.0 40.2 54.1

CCA∗ [12] (EB) 63.6 43.7 22.9 57.0 69.0 50.6 45.0 36.2 48.5
c-MWP (EB) 62.8 35.0 17.6 65.1 73.5 58.6 53.2 36.2 50.3

Results. The recall rates and mAP scores are reported in Table 4. For our
method and the baselines, we additionally report the performance on a subset of
small instances whose bbox area is below 0.25 of the image size, as we find small
regions are much more difficult to localize. Our c-MWP consistently outperforms
all the attention map baselines across different metrics. In particular, the group-
level mAP of our method is better than the second best by a large margin.

We also compare with a recent fully supervised method [12], which is trained
directly on the Flickr30k Entities dataset using CNN features. For fair com-
parison, we use the same bbox proposals used in [12], which are generated by
EdgeBoxes (EB) [39]. These proposals are pre-computed and provided by [12].
Our performance using EB is lower than using MCG, mainly due to the lower
accuracy of the EB’s bbox proposals. Compared with the segmentation propos-
als, the bbox proposals can also affect our ranking function for small and thin
objects. However, our method still attains competitive performance against [12].
Note that our method is weakly supervised and does not use any training data
from the Flickr30k Entities dataset.
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A little girl in pink is holding up her pointer finger and pinkie finger in the air while 
holding her sunglasses in the other hand.

An asian woman is jumping in celebration in a park outside the city.

A young lady wearing blue and black is running past an orange cone. A woman sits with a boy in an orange hat with a cookie in his hand as he makes 
a funny face.

girlwoman jumping celebration

lady running cone woman cookieboy

finger sunglassesInput

Input Input

Input

Fig. 7. Word attention maps obtained by c-MWP using our image tag classifier. For
each test image, one of its caption annotations from Flickr30k Entities is displayed
below. We show the attention maps for the words in red in each caption. By leveraging
a large-scale weakly labeled dataset, our method can localize a large number of visual
concepts, e.g. objects (cone, sunglasses and cookie), fine-grain categories of people
(woman and boy), body parts (finger) and actions (jumping, running and celebration).
More examples are included in our supplementary material.

We further report the per-group Recall@5 score in Table 5. Our method
achieves promising results in many group types, e.g. vehicle and instrument.
Note that the fully supervised CCA (EB) [12] gives significantly worse perfor-
mance than c-MWP (EB) in animal, vehicle and instrument, which are the
three rarest types in the Flickr30k Entities dataset. This again shows the limi-
tation of fully-supervised approaches due to the lack of fully-annotated data.

Some example word attention maps are shown in Fig. 7 to demonstrate the
localization ability of our method. As we can see, our method can localize not
only noun phrases but also actions verbs in the text.

5 Conclusion

We propose a probabilistic Winner-Take-All formulation to model the top-down
neural attention for CNN classifiers. Based on our formulation, a novel prop-
agation method, Excitation Backprop, is presented to compute the Marginal
Winning Probability of each neuron. Using Excitation Backprop, highly dis-
criminative attention maps can be efficiently computed by propagating a pair
of contrastive top-down signals via a single backward pass in the network. We
demonstrate the accuracy and the generalizability of our method in a large-
scale Pointing Game. We further show the usefulness of our method in localizing
dominant objects. Moreover, without using any localization supervision or lan-
guage model, our neural attention based method attains competitive localization
performance vs. a state-of-the-art fully supervised method on the challenging
Flickr30k Entities dataset.
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