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Abstract. To effectively solve the problem of large scale video face
recognition, we argue for a comprehensive, compact, and yet flexible rep-
resentation of a face subject. It shall comprehensively integrate the visual
information from all relevant video frames of the subject in a compact
form. It shall also be flexible to be incrementally updated, incorporating
new or retiring obsolete observations. In search for such a representa-
tion, we present the Eigen-PEP that is built upon the recent success of
the probabilistic elastic part (PEP) model. It first integrates the informa-
tion from relevant video sources by a part-based average pooling through
the PEP model, which produces an intermediate high dimensional, part-
based, and pose-invariant representation. We then compress the inter-
mediate representation through principal component analysis, and only
a number of principal eigen dimensions are kept (as small as 100). We
evaluate the Eigen-PEP representation both for video-based face ver-
ification and identification on the YouTube Faces Dataset and a new
Celebrity-1000 video face dataset, respectively. On YouTube Faces, we
further improve the state-of-the-art recognition accuracy. On Celebrity-
1000, we lead the competing baselines by a significant margin while of-
fering a scalable solution that is linear with respect to the number of
subjects.

1 Introduction

With the proliferation of videos accumulated in online social multimedia, e.g.,
hundreds of hours videos are uploaded to YouTube every minute, the problem of
video face recognition in the wild has caught more and more attention in recent
years. Compared with image-based face recognition, face recognition from videos
not only presents new challenges, but also offers new opportunities. As shown
in Figure 1, faces in the videos are generally in lower quality, present more pose
variations, and often suffer from motion blur. These factors can induce more
visual variations of the faces and negatively influence the recognition accuracy.
On the other hand, a video clip of a face usually contains hundreds of frames
which present varied appearance of the same subject. This obviously offers ad-
ditional opportunities to better model the visual variations for more robust face
recognition by integrating the information from all the frames.

A naive approach to video face recognition would be applying existing image
based face recognition algorithms [1], such as those top performers on the Labeled
Faces in the Wild (LFW) [2–7], to conduct frame-to-frame matching and then
fusing the matching results across all the frame pairs together when comparing
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(a) LFW (b) YouTube Faces (c) Celebrity-1000

Fig. 1. Sample images in three unconstrained face recognition datasets: the image-
based Labeled Faces in the Wild (LFW), video-based YouTube Faces Database, and
video-based Celebrity-1000 dataset.
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Fig. 2. The high-level training work-flow of our method.

two video faces. This is obviously not a scalable solution as the complexity of a
single match is already O(n2) with respect to the number of frames n each video
possesses.

Previous work on the video face recognition includes methods representing
the video data by linear combination of the training data [8, 9], utilizing proba-
bilistic methods to exploit the intrinsic manifolds [10–12], etc. We refer readers to
Zhao et al. [13] for a more comprehensive survey of earlier literatures. Notwith-
standing the demonstrated efficacy of these methods, the computational expense
is a hurdle when applied to large-scale video face recognition.

We argue that, to effectively solve the problem of large scale video face recog-
nition, we need a comprehensive, compact, and yet flexible representation of a
face subject. By comprehensive, we mean that it shall integrate the visual in-
formation from all relevant video frames (even those from multiple videos) of a
subject to better model the visual variations. By compact, we mean that it is
scalable both in terms of computing and storage. By flexible, we mean that it
can be incrementally updated, either incorporating new observations, or retiring
obsolete observations, without the need to revisit all the video frames used to
build the original representation.

To address these requirements, we propose a new video face representation
named Eigen-PEP for video face recognition in the wild. The Eigen-PEP repre-
sentation is built upon the recent success of the probabilistic elastic part (PEP)
model proposed by Li et al. [14, 15] The Eigen-PEP integrates information from
all the video frames by a part-based average pooling through the PEP model,
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which produces an intermediate high dimensional, part-based, pose-invariant
representation. It then compacts the high dimensional intermediate representa-
tion by principal component analysis (PCA), after which only a small number
(as small as 100) of principal eigen dimensions is retained. This compact video
representation maintains the flexibility from the nature of average pooling to
incorporate or exclude frames incrementally. We then adopt the joint Bayesian
classifier [16] to implement face recognition based on the Eigen-PEP represen-
tation. The high-level work-flow of the video face recognition system based on
Eigen-PEP is summarized in Figure 2. We utilize the PEP model [14, 15] and
PCA to construct the Eigen-PEPs for videos (Section 3.2). In the training stage,
the joint Bayesian classifier [16] is trained from a set of matched and mismatched
video pairs (Section 3.3) represented in the Eigen-PEPs. The classifier is then
applied to compare two face videos in the testing stage for either video face veri-
fication or identification. In practice, the storage size of an Eigen-PEP produced
from one video or multiple videos of a subject can be less than 400 bytes. Hence
a system based on Eigen-PEP is highly scalable and the matching process can
be very efficient.

In particular, without resorting to more advanced indexing scheme, a video
face identification system based on the proposed Eigen-PEP representation would
have a run-time that is linear to the number of subjects presented in the gallery
database. This is achieved by generating one Eigen-PEP representation per sub-
ject, from all videos associated with that subject. Another advantage of the
proposed Eigen-PEP representation is that its size is invariant to the length of
the input video. Hence, the Eigen-PEP representation can be readily used with
more advanced indexing methods, such as tree-based indexing, to further reduce
the run-time complexity for identification to be O(log(n)), which we defer to our
future work.

We evaluate our method on two large-scale video face recognition databases,
and an image face recognition dataset, both for face verification and identifica-
tion. We also participated the recent Point-and-Shoot Face Recognition Chal-
lenge (PaSC) 1 and our method significantly outperforms other competitors un-
der the video-to-video face recognition setting [17]. Note the proposed method
can be applied to image face recognition naturally by processing an image as
a one-frame video. We can also flip the image horizontally to generate a two-
frame video, from which we built the Eigen-PEP representation. Therefore, our
research contributes to video face recognition in the following aspects:

– We propose a comprehensive, compact, and flexible Eigen-PEP video face
representation with superb recognition accuracy.

– We present a highly scalable video face recognition system based on the
Eigen-PEP representation.

– We outperform the state-of-the-art recognition accuracy over three challeng-
ing face recognition datasets.

1 http://www.cs.colostate.edu/˜vision/pasc/ijcb2014/
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2 Review of the PEP Model

As we have mentioned, the proposed Eigen-PEP representation is built upon
the PEP representation proposed by Li et al. [14, 15]. The PEP representation
can deal with a single face or a face set. The PEP representation itself has
been shown to be robust to pose variations. When it is applied to video face
recognition, a PEP model selects a set of image patches out of all video frames
and concatenates the descriptors of the selected image patches into a single
vector as the PEP representation.

Although the PEP model presents great potential in modeling human faces,
there are several issues when applying it to more practical and large-scale video
face recognition. First, the PEP representation is high dimensional (e.g., 1024×
128 dimensional using SIFT) which is memory demanding. Second, Li et al. [14]
used a kernel Support Vector Machine (SVM) to match two PEP representations
for recognition, which is not scalable (Section 4.2).

Third, for modeling video faces, the PEP representation may lose valuable
information from appearance variations presented in the video, since it keeps
only a small portion of feature descriptors by a part-based probabilistic max
pooling. Because of this, although the PEP representation can be incrementally
updated to incorporate new observations, it cannot be incrementally updated to
remove obsolete observations.

Compared to the PEP representation, the Eigen-PEP representation is more
compact, flexible, and comprehensive. We integrate the information from all
video frames (even those from multiple videos) by introducing a part-based av-
erage pooling to the PEP model. Since we build PEP representation for every
frame, the appearance variations under different poses, expressions, and illumi-
nations etc., are integrated.

Because the PEP representations are part-based and robust to pose vari-
ations, the corresponded selected descriptors consistently come from the same
facial part. Intuitively, the mean of the descriptors from each part can naturally
suppress the appearance variations, leading to a robust representation. To ad-
dress the high-dimensionality problem, we apply PCA over all video-level PEP
representations and only retain a small number of principal eigen dimensions.

Since an Eigen-PEP integrates the appearance of different poses and expres-
sions, it is very suitable to represent a subject in a large-scale video face iden-
tification system by building a single representation from all videos associated
with that subject. Once each gallery person has a single vector representation
to incorporate all available videos of him/her, even the brute-force complexity
in the testing stage will be linear to the number of gallery identities, instead of
the number of gallery videos.

In addition to its compactness and comprehensiveness, the Eigen-PEP bene-
fits from the nature of the average pooling to be flexible for incremental modifi-
cations (Section 3.2). For example, we can update the Eigen-PEP incrementally
to incorporate new video frames of the same subject, or to remove obsolete video
frames, without the need to access all the other video frames used to build the
initial representation.
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3 The Eigen-PEP Representation

3.1 The PEP Representation

The PEP representation has been shown to be effective in modeling human
faces [14, 15]. We refer the readers to Li et al. [14] for the details. To build the
PEP representation for a video, all the video frames are firstly processed into a
set of descriptors {f} = {[ai li]}Mi=1, where [ai li] denotes one spatial-appearance
descriptor; a is the appearance part and l is the spatial part.

The training stage builds a PEP model (or Universal Background Model
in [14]) parameterized by Θ over training descriptors with the Expectation-
Maximization (EM) algorithm. The PEP model is a Gaussian mixture model
with K spherical Gaussian components,

P ([a l]|Θ) =

K∑
k=1

ωkG([a l]|µk, σ
2
kI), (1)

where Θ = (ω1,µ1, σ1, . . . , ωK ,µK , σK); I is an identity matrix; ωk is the mix-
ture weight of the k-th Gaussian component; G(µk, σ

2
kI) is a spherical Gaussian

with mean µk and variance σ2
kI. Each one of the K Gaussian components com-

mits one descriptor with the highest generative probability and the PEP repre-
sentation of {f} is the concatenation of the appearance part of the K selected
descriptors, i.e,

F = [ag1 ag2 . . . agK ], gk = arg max
i

ωkG([ai li]|µk, σ
2
kI). (2)

3.2 The Eigen-PEP Extension

Given a video of multiple frames, we process each single video frame into its PEP
representation. Because the PEP representation is part-based and pose-invariant,
the PEP representations from the video frames are aligned facial part descriptors.
Since the PEP representation is concatenated local descriptors of facial parts,
the mean of the corresponding descriptors naturally suppresses the appearance
variations across all video frames. Hence the mean of the PEP representations
over all the frames is an intermediate high-dimensional part-based video-level
representation.

To reduce its dimensionality, we apply Principle Component Analysis (PCA)
and keep d principal eigen dimensions. The PCA is trained over all the video-
level intermediate PEP representations from the training data. We hence name
the video-level representation after PCA the Eigen-PEP.

The workflow for building the Eigen-PEP is shown in Figure 3. Formally, let
F1,F2, . . . ,FN denote the PEP representations for video V with N frames; and
P denotes the PCA projection. The Eigen-PEP for the video V is

feig(V ) = PT 1

N

N∑
n=1

Fn. (3)
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Fig. 3. Workflow for building the Eigen-PEP of a video: 1) the PEP model is learned
from training video frames; 2) for each frame in the testing video, the PEP represen-
tation is partially visualized as the selected image patches of which the patches at the
same location are consistent in semantics but varied in appearance across the video
frames; 3) visualization of the intermediate video level representation as the pixel-level
mean; 4) apply PCA to project the intermediate video level representation into a low-
dimensional space to build the Eigen-PEP; the PCA is trained over all video level
intermediate representations.

Compared with the PEP representation, the Eigen-PEP is more comprehensive
and compact. In building the intermediate video level representation of the video
V , each Gaussian component of the PEP model actually commits N descriptors
(one from each video frame), and therefore encodes more appearance variations.
The intermediate representation is then built by average pooling per Gaussian
component over the N descriptors it selected.

Besides that, benefiting from the nature of this part-based average pooling,
the intermediate representation is flexible to incremental modification. Further-
more, the linear nature of the PCA allows the Eigen-PEP to maintain this flexi-
bility. Specifically, with a new video frame FN+1, the Eigen-PEP can be updated
incrementally without the need of accessing other video frames, i.e.,

feig(V )← N

N + 1
feig(V ) +

1

N + 1
PTFN+1. (4)

Similarly, to retire the n-th frame it can be deducted from the representation
without accessing the other video frames by

feig(V )← N

N − 1
feig(V )− 1

N − 1
PTFn. (5)

3.3 Joint Bayesian Classifier

Chen et al. [16] propose the joint Bayesian classifier to explicitly model the
intra-person and extra-person variations as zero-mean Gaussians with covariance
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matrices ΣI and ΣE respectively. The similarity of a face pair (x1, x2) is then
measured by the likelihood ratio

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)
= xT1 Ax1 + xT2 Ax2 − 2xT1Gx2, (6)

where (
F G
G F

)
= Σ−1I ,

(
A 0
0 A

)
= Σ−1E −

(
F 0
0 F

)
. (7)

HI and HE denote the intra-person and extra-person hypothesis parameterized
by the covariance matrices ΣI and ΣE respectively.

Chen et al. [16] utilizes an EM algorithm relying on identity information to
estimate the matrices A and G. In practice, when the identity information is not
available, we can estimate ΣI and ΣE from matched and mismatched face pairs
directly i.e.,

ΣI = cov(XI , XI), ΣE = cov(XE , XE), (8)

where XI and XE are the sets of concatenated Eigen-PEP pairs of the matched
and mismatched face pairs respectively.

In face verification, we use the joint Bayesian classifier without EM to bypass
the necessity of identity information. In face identification, since the identity in-
formation is available, we follow the one with EM for better recognition accuracy.
Note that only the training time complexity is different in these two cases, the
run-time efficiency is the same.

4 Experiments

We perform extensive experiments to evaluate the effectiveness of the proposed
representation under different scenarios including video face verification on the
YouTube Faces Database [1], large-scale video based face identification on the
Celebrity-1000 dataset [18]2, and image face verification on the Labeled Face
in the Wild (LFW) dataset [19]. Over all three datasets, our method achieves
superior performance compared to the state-of-the-art algorithms.

4.1 Video face verification on YouTube Faces database

In video face verification, the training data is given in the form of matched and
mismatched video face pairs. We follow Equation 7 and Equation 8 to learn the
matrices A and G.

In the testing stage, the input is a pair of videos V1 and V2. After processing
the video face pair into Eigen-PEPs feig(V1) and feig(V2), the joint Bayesian
classifier is applied following Equation 6 to assign the similarity score to this
video pair, i.e.,

r(feig(V1), feig(V2)) = feig(V1)TAfeig(V1) + feig(V2)TAfeig(V2)

− 2feig(V1)TGfeig(V2).

2 http://www.lv-nus.org/facedb/
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We evaluate our method on the YouTube Faces Dataset (YTFaces) pub-
lished by Wolf et al. [1], and compare the result with the state-of-the-art. This
dataset contains 3,425 videos of 1,595 different people. Each video consists of
181.3 frames on average. Faces are detected by the Viola-Jones detector and
aligned by fixing the coordinates of automatically detected facial feature points
[1]. We follow the standard protocol to report the average accuracy over 10-folds
evaluation.

In our experiments, video frames are center cropped to 100 × 100 before
feature extraction. To leverage the left-right facial symmetry in the Eigen-PEP,
we flip the original video frames horizontally as additional new video frames. We
report the recognition accuracy with and without the flipped frames separately.

For the parameters in our system, the SIFT descriptors are extracted over
a 3-scale Gaussian image pyramid with scaling factor 0.9, densely from a 8 × 8
sliding window with 2-pixel spacing. The PEP model consists of 1024 Gaussian
components and we keep top 100 eigen vectors in the PCA. Hence the dimen-
sionality of Eigen-PEPs is 100. The storage size of Eigen-PEP for a single video
is hence only 400 bytes (100 float values).

As shown in Table 1 and Figure 4, our method outperforms the state-of-the-
art algorithms on the YouTube Faces Database under the restricted protocol.
Although the Parkhi et al. [20] achieves comparable performance to our method,
their method relies on large amount of training data in the discriminative di-
mensionality reduction. As a result, under the restricted protocol, their method
produces very high dimensional video representations. Note that on the same
dataset, Taigman et al. [21] pushed the accuracy as high as 91.4 ± 1.1%. How-
ever they leveraged massive outside training data (4 million) while we only use
the provided 4, 500 pairs of face tracks for training. Note that there is a list of
label errors uploaded to the YouTube Faces webpage recently [21], we also report
our result with the corrected labels.

Table 1. Performance comparison over YouTube Faces

Algorithm Accuracy ± Error(%)

MBGS [1] 76.4 ± 1.8
MBGS+SVM- [22] 78.9 ± 1.9

STFRD+PMML [23] 79.5 ± 2.5
VSOF+OSS(Adaboost) [24] 79.7 ± 1.8

APEM (fusion) [14] 79.1 ± 1.5
VF2 [20] 84.7 ± 1.4

DDML (combined) [25] 82.3 ± 1.5
Our method 82.40 ± 1.7

Our method (with flipped frames) 84.80± 1.4
Our method (with flipped frames, corrected labels) 85.04± 1.49

4.2 Video face identification on Celebrity-1000

In terms of video face identification on Celebrity-1000 dataset, there are two
categories of protocols: the open-set face identification and the close-set face
identification. In both protocols, the task is to identify the identity of the probe
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Fig. 4. Performance comparison over YouTube Faces.

face video given a set of gallery face videos. In the open-set protocol, the gallery
face videos are not in the training data.

In the training stage, we use the training data to learn the PEP model and
PCA projections for the Eigen-PEP representation. After that, for each gallery
subject, we build one Eigen-PEP from all his/her videos as the representation
of the subject. Since the identity information is available, instead of following
Equation 8, we follow Chen et al. [16] to train the joint Bayesian classifier.

In the testing stage, the probe face video is firstly processed into Eigen-PEP.
Then the similarity between the probe face and each gallery face is measured by
the joint Bayesian classifier. The performance of the identification is measured
by the cumulative match characteristic curve (CMC) [26] which reports the top
k recognition accuracy with varying k.

Liu et al. [18] published the Celebrity-1000 dataset to study the large-scale
unconstrained video-based face identification problem. This dataset contains
159,726 video sequences of 1,000 human subjects. Faces are detected by the
OMRON face detector. We evaluate our method under both the open-set and
close-set protocols.

In the open-set protocol, 200 subjects are used for training. In the testing
stage, videos are provided as the gallery set and probe set. There are 4 differ-
ent experimental settings with different number of probe and gallery subjects:
100, 200, 400 and 800. In the close-set protocol, dataset is divided into training
(gallery) subset and testing (probe) subset. Similarly, there are 4 settings for
close-set: 100, 200, 500 and 1000 subjects.

Considering the relatively low-resolution of the video frames (80 × 64) in
Celebrity-1000, we extract SIFT descriptors in a 8 × 8 sliding windows with 1-
pixel spacing. The PEP model consists of 200 components. In the PCA, we keep
90% accumulated eigen values. We use a maximum of 20, 000 training videos in
the PCA. As a result, the dimensionality of Eigen-PEPs varies from 100 to 400
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Fig. 5. Performance comparison over Celebrity-1000 dataset (close-set): the curve de-
scribes the rank K recognition accuracy.

for different settings. For the open-set protocol, the Eigen-PEP dimension is set
to 500. Hence, the storage size of Eigen-PEP for a single gallery subject is no
more than 2 kilobytes.

We compare our method with the Multi-task Joint Sparse Representation
(MTJSR) [8] which is the current state-of-the-art on Celebrity-1000 [18] 3. As
shown in Figure 5 and Figure 6, and Table 2, our method outperforms the
MTJSR algorithm under both the open-set and close-set protocols.

In addition to the superior accuracy, our system is more efficient than the
MTJSR. In the testing stage of MTJSR, it solves an optimization problem to
represent every frame of the probe video sequence as a sparse linear combination
of video sequences of a gallery subject. The classification is then based on the
accumulated reconstruction error.

Denote the number of gallery subjects as M , the number of frames of the
probe video is N ; the number of matching times of MTJSR is generally N ×M .
Moreover, each matching needs to solve an optimization problem of a sparse
representation which by itself is a complex computation. Given the same probe
video, the number of matching times in our system, after processing the probe
video into Eigen-PEP, is only M . Besides, each matching operation in our system
is exactly three times of vector-matrix multiplications and two times of add
operations of scalar values. Considering the typical dimension of Eigen-PEP is
only a few hundred, our matching operation is far faster.

Specifically, in the close-set protocol with 1000 gallery subjects, the run-time
of evaluating one probe video in our system is about 2 seconds, most of which

3 We thank the authors for sharing theirs results.
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(c) open-set 400 subjects
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Fig. 6. Performance comparison over Celebrity-1000 dataset (open-set): the curve de-
scribes the rank K recognition accuracy.

is for building the Eigen-PEP, and the matching time is only 0.05 second. In
comparison, the evaluation time of MTJSR for one test sequence, as reported
by [18], is 1.6 × 103 seconds. Besides, our experiment is conducted on a single
machine with 12 CPU cores (2.4GHz) while Liu et al. [18] used a cluster with 14
workstations each of which has 8 CPU cores (3GHz). On average, their run-time
is roughly 6 orders of magnitude greater than ours.

We also evaluate the performance of using SVM with the PEP-representations
as described in Li et al. [14] which takes 41 seconds (matching time) for one query
in the 1000 gallery subjects face identification task. Hence in terms of the match-
ing time, our system is 800 times faster than theirs and our video representations
are far more storage-efficient.

To further explore how the number of dimensions influence the effectiveness of
the Eigen-PEP. We perform an experiment on the open-set 800 subjects setting
to evaluate the identification accuracy with Eigen-PEPs of differing dimensions,
i.e., 200, 300, 500 and 1000. As shown in Figure 7, except for the rank-1 accuracy
when Eigen-PEP is of only 200 or 300 dimensions, all Eigen-PEPs outperforms
the MTJSR by a significant margin. This observation also suggests that the
dimension of the Eigen-PEP can be a trade-off parameter to balance the accuracy
and efficiency.

We present an example result in Figure 9. As observed, different video se-
quences of the same gallery subject present varied appearance. Nevertheless by
representing a subject as one Eigen-PEP representation our system can success-
fully identify the probe video. This observation demonstrates the Eigen-PEP as
a comprehensive video representation.
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Table 2. Performance comparison on Celebrity-1000 dataset: showing the rank-K
accuracy.

rank-1 (%) rank-2 (%) rank-5 (%) rank-10 (%)

close-set 100 Eigen-PEP 50.60 59.76 68.92 74.90
MTJSR 50.60 55.78 66.53 71.31

close-set 200 Eigen-PEP 45.02 52.49 65.33 71.65
MTJSR 40.80 48.47 55.56 62.45

close-set 500 Eigen-PEP 39.97 48.21 57.85 65.09
MTJSR 35.46 40.05 46.35 50.86

close-set 1000 Eigen-PEP 31.94 40.27 51.01 59.50
MTJSR 30.04 34.88 40.58 44.77

open-set 100 Eigen-PEP 51.55 61.63 68.22 74.03
MTJSR 46.12 55.04 62.02 69.38

open-set 200 Eigen-PEP 46.15 55.03 66.07 73.18
MTJSR 39.84 46.55 54.64 61.93

open-set 400 Eigen-PEP 42.33 49.57 61.23 69.62
MTJSR 37.51 42.91 48.41 53.91

open-set 800 Eigen-PEP 35.90 44.27 54.60 61.07
MTJSR 33.50 37.71 42.41 46.03
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Fig. 7. Performance of different dimensional Eigen-PEPs over Celebrity-1000 dataset.

4.3 Image Face Verification

Although we propose the compact PEP representation for video-based face recog-
nition, it naturally applies to the image-based setting by processing the image as
a one-frame video. Furthermore, we can actually generate a two-frame video by
horizontally flipping the face image to better leverage the facial symmetry in the
Eigen-PEP representation. The Labeled Faces in the Wild (LFW) [19] dataset
is designed to address the unconstrained image-based face verification problem.
This challenging dataset contains more than 13,000 images from 5,749 people.

We follow the image-restricted, no outside data protocol of LFW [27] using
the faces roughly aligned with the funneling method [28]. Besides that we do
not leverage any external data for strong face alignment, feature extraction or
recognition model training.
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Similarly, we extract SIFT descriptors in 8 × 8 sliding window with 2-pixel
spacing in the center cropped 150 × 150 images. The PEP model is of 1024
components and the PCA reduces the dimensionality to 100.

As shown in Table 3 and Figure 8, our method outperforms the state-of-
the-art algorithms on LFW. We also evaluate the performance of combining the
joint Bayesian classifier with the PEP representation. Since it is not practical
to apply joint Bayesian classifier over the high-dimensional PEP representation
directly due to the large size of covariance matrices, we apply PCA to reduce
the dimensionality of PEP representation to be 100 as well. To be fair, the PCA
is trained separately over training PEP representations.

In a single frame case, our method is equivalent to applying the joint Bayesian
classifier for the PEP representation after PCA. Compared with the results from
APEM by Li et al. [14], which is essentially the PEP representation with a
kernel SVM on the absolute difference of the PEP representations for verification
with an additional step of Bayesian adaptation, it clearly shows the advantage
of adopting the joint Bayesian classifier. We believe that taking the absolute
difference of two PEP representations resulted in loss of important discriminative
information.

Table 3. Performance comparison on the LFW, under image-restricted, no outside
data protocol

Algorithm Accuracy ± Error(%)

V1/MKL [29] 79.35 ± 0.55
Simonyan et al. [30] 87.47 ± 1.49
APEM (Fusion) [14] 84.08 ± 1.20
1-frame Eigen-PEP 86.27 ± 1.06

2-frame PEP representation 87.37 ± 0.66
2-frame Eigen-PEP 88.47± 0.91

2-frame Eigen-PEP (fusion) 88.97± 1.32

We also compare with the 2-frame PEP representation setting, in which a
single PEP representation is built for the two images. Similarly, PCA is ap-
plied to the PEP representation and the joint Bayesian classifier is adopted for
classification. As observed, the Eigen-PEP consistently outperforms the PEP
representation in all the cases.

Following similar process in Li et al. [14], by fusing the additional result using
Local Binary Pattern (LBP) [31] descriptors with a linear SVM, we observe
further improvement on LFW.

5 Conclusion

In this paper, we propose the Eigen-PEP video face representation. We com-
bine the Eigen-PEP with the joint Bayesian classifier for video face recognition.
The Eigen-PEP naturally integrates information from all video frames and is
flexible to dynamical modification. The small footprint of the proposed Eigen-
PEP makes the overall video face recognition framework to be scalable and be
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suitable for large-scale video face identification. Extensive experiments are con-
ducted over three challenging real-world face recognition datasets to evaluate the
proposed method in video face verification, video face identification and image
face verification. The proposed method outperforms the existing state-of-the-art
algorithms under all three tasks.
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