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Abstract
Parsing urban scene images benefits many applications,

especially self-driving. Most of the current solutions employ
generic image parsing models that treat all scales and loca-
tions in the images equally and do not consider the geome-
try property of car-captured urban scene images. Thus, they
suffer from heterogeneous object scales caused by perspec-
tive projection of cameras on actual scenes and inevitably
encounter parsing failures on distant objects as well as
other boundary and recognition errors. In this work, we
propose a new FoveaNet model to fully exploit the perspec-
tive geometry of scene images and address the common fail-
ures of generic parsing models. FoveaNet estimates the per-
spective geometry of a scene image through a convolutional
network which integrates supportive evidence from contex-
tual objects within the image. Based on the perspective ge-
ometry information, FoveaNet “undoes” the camera per-
spective projection — analyzing regions in the space of the
actual scene, and thus provides much more reliable pars-
ing results. Furthermore, to effectively address the recogni-
tion errors, FoveaNet introduces a new dense CRFs model
that takes the perspective geometry as a prior potential. We
evaluate FoveaNet on two urban scene parsing datasets,
Cityspaces and CamVid, which demonstrates that FoveaNet
can outperform all the well-established baselines and pro-
vide new state-of-the-art performance.

1. Introduction
Urban scene parsing is a heated research topic that finds

application in many fields, especially self-driving. It aims
to predict the semantic category for each pixel within a
scene image captured by car mounted cameras, which en-
ables self-driving cars to perform reasoning about both the
overall scene background and the individual objects moving
in front of the cars.

Recent progress in urban scene parsing is mostly driven
by the advance of deep learning. Deep convolutional neu-

Figure 1: Illustration of our motivation. Top two rows: a scene
image with perspective geometry and its two zoomed-in regions.
Bottom two rows: typical failures in urban scene parsing. Left:
“broken-down” error on objects of large scales (the bus). Right:
boundary errors on objects of small scales.

ral network (CNN) based parsing algorithms [25, 21] have
demonstrated remarkable performance on several semantic
parsing benchmarks [7, 5, 24]. However, directly apply-
ing the generic CNN based image parsing models usually
leads to unsatisfactory results on urban scene images for
self-driving cars, since they ignore the important perspec-
tive geometry of scene images.

As captured by ego-centric cameras, perspective projec-
tion from actual scenes to the image plane changes the ob-
ject scales: a nearby car seems much bigger than a car far
away, even though they have the same scale in reality. The
top row in Figure 1 illustrates such a perspective geome-
try structure within a scene image. Generic parsing models
do not take such heterogeneous object scales into consider-
ation. Consequently, they do not perform well on parsing
distant objects (of small scales), and boundary and recog-
nition errors are introduced. See the parsing result marked
with the small box in Figure 1. In addition, objects that are
near to the camera and usually distributed within the pe-



ripheral region have relatively large scales. Generic parsing
models tend to “break down” a large-scale object into sev-
eral pieces of similar classes, as shown in the parsing result
marked with the big box in Figure 1. Both of the above
problems are from ignoring the perspective geometry.

Therefore, we propose a novel FoveaNet to handle het-
erogeneous scales in urban scene parsing by considering the
perspective geometry. FoveaNet works like the fovea of hu-
man eyes: the center of the vision field (fovea region) is
focused on and the visual acuity is the highest. Through lo-
calizing “the fovea region” during parsing, FoveaNet “un-
does” the camera perspective projection by scale normaliza-
tion and parses regions at suitable scales.

Specifically, FoveaNet employs a perspective estimation
network to infer the overall perspective geometry and output
dense perspective scores for each individual pixel, indicat-
ing the nearness of a pixel to the vanishing point. Objects
with large perspective scores are usually small in the pro-
jected scene image. To address the unsatisfactory perfor-
mance on parsing distant objects, FoveaNet performs scale
normalization on the fovea region that consists of small-
scale objects. Then the parsings of small distant objects
and large near objects are untangled by a perspective-aware
parsing scene network, and boundary errors induced by
small scale objects are reduced.

To address the “broken-down” issues with parsing large
objects, FoveaNet employs a new perspective-aware dense
CRFs model that takes as input the perspective information
and outputs different potentials on the pixels of different
perspective scores. The proposed CRFs smooths the pix-
els from distant objects with large perspective scores more
slightly than on the large objects. Through this adaptive
strategy, the proposed CRFs are able to handle the “broken-
down” errors and meanwhile avoid over-smoothing on
small objects. We evaluate the proposed FoveaNet on two
challenging datasets, Cityspaces and CamVid, and prove
that it can provide new state-of-the-art performance on ur-
ban scene parsing problems. We make following contribu-
tions to urban scene parsing:
• We propose to consider perspective geometry in urban

scene parsing and introduce a perspective estimation
network for learning the global perspective geometry
of urban scene images.
• We develop a perspective-aware parsing network that

addresses the scale heterogeneity issues well for urban
scene images and gives accurate parsing on small ob-
jects crowding around the vanishing point.

• We present a new perspective-aware CRFs model that
is able to reduce the typical “broken-down” errors in
parsing peripheral regions of a scene image.

2. Related Work
Semantic Parsing Recently, deep learning has greatly
stimulated the progress on parsing tasks. Among

CNN based algorithms, the Fully Convolutional Network
(FCN) [25] and the DeepLab model [21] have achieved
most remarkable success. Afterwards, various approaches
have been proposed to combine the strengths of FCN and
CRFs [39, 23], or to refine predictions by exploiting fea-
ture maps output by more bottom layers [28, 11]. A com-
mon way to deal with scale issues in parsing is to zoom
in the input images [9, 27, 6, 22, 4]. The input images
are rescaled to multiple scales and processed by a shared
deep network [6, 22, 4]. More recently, Xia et al. [34] ad-
dressed the scale issues in the scenario of object parsing
by “zoom and refine”. However, it is not suitable for ur-
ban scene parsing. Our FoveaNet differs from end-to-end
trained attention models which learn black-box localization
functions [31, 35, 26, 17]. Instead, FoveaNet explicitly
models the visible geometry structure for fovea region lo-
calization and better fits the urban scene parsing task.
Perspective Geometry in Urban Scenes As 3D per-
spective geometry is a key property of urban scene im-
ages, several works consider modeling 3D geometric in-
formation as an additional feature for scene understand-
ing [33, 19, 14, 15, 38]. Sturgess et al. [33] made use of ge-
ometric features in road scene parsing, which are computed
using 3D point clouds. Hoiem et al. [14] modeled geometric
context through classifying pixels into different orientation
labels. Some others infer proper object scales with perspec-
tive geometry [15, 38, 19]. For example, Hoiem et al. [15]
established the relationship between camera viewpoint and
object scales, and used it as a prior for an object proposal.
Ladicky et al. [19] trained a classifier with hand-crafted fea-
tures to jointly solve semantic parsing and depth estimation.
Training samples are transformed into the canonical depth,
due to the observation that performance is limited by the
scale misalignment due to the perspective geometry. All of
the methods above are based on hand-crafted features rather
than deep learning.

3. The Proposed FoveaNet
3.1. Overview

The basic idea of FoveaNet is estimating the perspec-
tive geometry of an urban scene image and parsing regions
at suitable scales, instead of processing the whole image
at a single scale. The overall architecture of FoveaNet
is illustrated in Figure 2. The FoveaNet consists of two
components, i.e., the perspective-aware parsing net and the
perspective-aware CRFs.

The perspective-aware parsing net aims at better pars-
ing small scale objects crowding around the vanishing point
by exploiting the image inherent perspective geometry. We
propose a perspective estimation network (PEN) to estimate
the perspective geometry by predicting a dense perspective
heatmap, where a pixel of an object nearer to the vanishing
point would have a larger value. Thus PEN provides clues



Figure 2: Architecture overview of FoveaNet. FoveaNet consists of a perspective-aware parsing network and perspective-aware CRFs.
With the perspective estimation network (PEN), FoveaNet infers the global perspective geometry by producing a heatmap. Based on the
perspective heatmap, FoveaNet localizes a fovea region (cyan rectangle) where small distant objects crowd. FoveaNet performs scale
normalization on the fovea region, on which it produces a finer parsing via the Fovea branch. This result is then fused with the parsing
from a coarse branch into the final prediction. The perspective-aware CRFs take input the fused parsing result, the perspective heatmp as
well as object detection results, and output the final parsing result. Best viewed in color.

to locate a fovea region within which most small scale ob-
jects crowd. The fovea region is then re-scaled and receives
finer processing by the parsing net, i.e. a two-branch FCN.
In this way, small distant objects are untangled from large
near objects for parsing.

The perspective-aware CRFs aim at addressing “broken-
down” errors when parsing the peripheral region of a scene
image. Within this new CRFs model, we introduce a spa-
tial support compatibility function that incorporates the per-
spective information from PEN, and facilitates the parsing
by imposing adaptive potentials at different locations with
different perspective heatmap scores. Only the regions con-
fidently from the same object are processed by the CRFs.
Small distant objects will be smoothed in a lighter way than
the large near objects. The “broken-down” errors in periph-
eral regions can be alleviated effectively. We now proceed
to introduce each component of FoveaNet, respectively.

3.2. FCN in FoveaNet

FoveaNet is based on the fully convolutional net-
work (FCN) [25] for parsing the images. As a deeper CNN
model benefits more for the parsing performance, we here
follow Chen et al. [3] and use the vanilla ResNet-101 [13]
to initialize the FCN model in FoveaNet. We observe that
preserving high spatial resolution of feature maps is very
important for accurately segmenting small objects within
scenes. Therefore, we disable the last down-sampling layer
by setting its stride as 1. This increases the size of the fea-
ture map output by res5 c to 1/16 of the input image size
(without this modification the size of the output feature map
is only 1/32 of the input image size).

3.3. Perspective-aware Scene Parsing Network

FoveaNet localizes the fovea region with proper scales
and concentrates on the localized fovea region to normalize

Figure 3: Architectural overview of the perspective estimation
network (PEN). PEN has a similar network structure as the FCN.
Given an input scene image, PEN produces a one channel heatmap
indicating (roughly) the nearness to the vanishing point at pixel-
level.

the various object scales. To this end, a perspective estima-
tion network is used to estimate the overall perspective ge-
ometry of a scene image and localize the region (roughly)
centered at the vanishing point where most of small scale
objects crowd. PEN then works together with a two-branch
FCN as a perspective-aware scene parsing network.
Training PEN PEN has a same structure as the baseline
FCN model, as shown in Figure 3. Our ground truth takes
the form of a heatmap: a larger value in the heatmap indi-
cates a higher possibility of small objects to crowd. As it
is not easy to estimate the vanishing point of a scene image
correctly (sometimes the vanishing point may be invisible
or not exist in the image), we use the object scale as a clue
to roughly estimate the position of the vanishing point and
the perspective geometry.

For training PEN, we formulate the ground truth
heatmap of an image as follows:

H
(n)
i =

AveSize(`(m))

Size(m)
,where i ∈ instance m,

Gi =
1

N

N∑
n=1

H
(n)
i , V

(n)
i = H

(n)
i + δ ×Gi, (1)



Figure 4: Illustration of perspective heatmap estimation. (a) An
urban scene image. (b) Parsing ground truth. (c) Ground truth per-
spective heatmap generated by Eqn. (1). (d) Estimated perspective
heatmap and detected Fovea region from PEN. Fovea region with
maximal response is highlighted in cyan. Best viewed in color.

In the above equation, m denotes an object instance in the
n-th image, and i indexes a pixel from this instance. `m de-
notes the category label of instance m. AveSize(`(m)) de-
notes the category-level average instance size. Thus H(n)

i ,
i.e. the value of pixel i in the n-th heatmap H(n), depends
on the ratio of the category-level average instance size over
the current instance size Size(m). Global perspective score
priorGi for the i-th pixel is the average value over all theN
heatmaps. The ground truth V (n)

i for training PEN is for-
mulated by weighted summing both the image specific char-
acteristics H(n)

i and the global average Gi, being traded-off
by a parameter δ.

PEN is trained by minimizing a smoothed `1 loss [12]
between the produced heatmap based on raw images and the
ground truth heatmap. Figure 4 illustrates the result of PEN.
Figure 4 (a) shows a training urban scene image with per-
spective geometry and Figure 4 (b) shows its ground truth
parsing map. We follow Eqn. (1) to obtain the ground truth
perspective confidence map shown in Figure 4 (c). From
the perspective map estimated by PEN (Figure 4 (d)), one
can observe that PEN successfully predicts the overall ge-
ometry of the input image — it outputs larger values for the
pixels closer to the vanishing point.

With this perspective heatmap, FoveaNet localizes the
fovea region with maximal response (highlighted with cyan
rectangle). In our experiments, we define the size of the
fovea region as 1/2 of the heatmap size. To locate the fovea
region based on the heatmap, FoveaNet passes the heatmap
from PEN through an average pooling layer. The receptive
field of the maximal pooling result on the heatmap is se-
lected as the fovea region, as illustrated by the cyan boxes
in Figure 2 and Figure 4 (d).

Discussion Another choice for estimating perspective in-
formation is to estimate depth information from a single im-
age [10, 8]. However, the single image depth prediction re-

sults are not discriminative for localizing distant objects. In
contrast, PEN can produce a heatmap with distinguishable
per-pixel scores, leading to more precise fovea region local-
ization. Therefore, we use the method introduced above to
estimate the perspective geometry and train PEN. A quali-
tative comparison between predicted depth [10] and our es-
timated perspective heatmap on Cityscapes dataset is pro-
vided in supplementary material.

Perspective-aware Scene Parsing FoveaNet performs
scale normalization to achieve better parsing performance
on objects of heterogeneous scales. After localizing the
fovea region, FoveaNet parses the fovea region and the raw
image separately through a two-branch FCN, as shown in
Figure 2. The raw input image passes through the coarse
branch to produce an overall parsing result. Meanwhile,
the fovea region is re-scaled to the original input size and
passes through the fovea branch to produce finer parsing
for the fovea region. The two branches have the same struc-
ture as the baseline FCN model and share parameters from
conv1 to res3 3b3. More architectural details are given in
Section 3.2. The two-branch FCN is end-to-end trainable
by minimizing per-pixel cross-entropy loss.

3.4. Perspective-aware CRFs

The perspective-aware scene parsing network can parse
the distant objects better by estimating perspective informa-
tion. However, another common issue in parsing scene im-
ages is that large objects in peripheral regions of a scene im-
age usually suffer from “broken-down” errors, i.e., a large
object tends to be broken into several small pieces which are
misclassified into different yet similar classes. This problem
is illustrated in the bottom left subfigure of Figure 1: some
parts of the bus are misclassified into the train, harming the
parsing performance on the peripheral region.

Intuitively, it would be beneficial for the final perfor-
mance to refine the prediction with the aid of appearance
features. In object segmentation, dense CRFs are usually
applied to the prediction scores produced by FCN, and
have shown impressive effects on refining prediction. How-
ever, directly applying dense CRFs to urban scene images
does not give satisfactory performance due to heteroge-
neous scales of objects from the fovea region and the pe-
ripheral region. A dense CRFs model performing well on
the peripheral region tends to over-smooth the predictions
on small objects from the fovea region, which harms the
performance on small objects significantly.

Based on the perspective information from PEN, we pro-
pose a new perspective-aware dense CRFs model to allevi-
ate “broken-down” errors. The CRFs model is trained sepa-
rately, following the DeepLab model [21]. Let ` denote the
label vector for all the pixels, fi denote the learned repre-
sentation of the pixel i, and pi denote the 2D-coordinate of



the pixel i in the image plane. The energy function of the
perspective-aware dense CRFs is defined as

E(`) =
∑
i

ψu(`i) +
∑
i,j

ψp,persp(`i, `j).

Here ψu is the standard unary potential. The pairwise po-
tential in our proposed CRFs model has a new form:

ψp,persp(`i, `j) = µ(pi, pj)ν(`i, `j)κ(fi, fj),

where the kernel κ(·, ·) is the contrast-sensitive two-kernel
potential proposed by Krahenbuhl et al. [18], and ν is
the Potts label compatibility function. Here µ is a new
spatial support compatibility function introduced for the
perspective-aware CRFs that considers auxiliary object de-
tection results and perspective information provided by
PEN:

µ(pi, pj) = dk

(∑
mεV̂ vm

|V̂ |
/

∑
nεBk

vn

|Bk|

)
(2)

The object bounding boxes are detected by a Faster-
RCNN [29] model. Among them, some bounding boxes
Bk, k = 1, 2...K contain the pixels pi,pj . Then the box
Bk with the maximum detection score dk is selected as
the target one. Here V̂ denotes the estimated heatmap,
and m,n index pixels from the estimated heatmap V̂ and
bounding box Bk respectively. This µ(pi, pj) incorporates
perspective information as follows. It lowers the weights
of the pairwise potential at a bounding box with higher
heatmap values. Thus for a small object with a high per-
spective score, the pairwise potential becomes small (im-
posing lighter spatial smoothing), and the unary potential
plays a major role. By focusing on each detection pro-
posal with adaptive perspective weights, the proposed CRFs
model effectively alleviates the “broken-down” problems
and meanwhile avoids over-smoothing the details.

4. Experiments
4.1. Experimental Settings

We implement FoveaNet using the Caffe library [16]
and evaluate its performance on two urban scene parsing
datasets: Cityscapes [5] and Camvid [2]. For performing
ablation studies on FoveaNet, we employ a vanilla FCN ar-
chitecture with ResNet-101 being its front-end model as the
baseline. It takes raw images as inputs and is trained with
per-pixel cross-entropy loss. During testing, it produces
parsing results at a single scale. We examine how its perfor-
mance changes by incorporating different components from
FoveaNet, in order to understand the contribution of each
component. FoveaNet is initialized by a modified ResNet-
101 network pre-trained on ImageNet (see Section 3.2 for
more details). We fine-tune the initial model on an individ-
ual scene parsing dataset. The initial learning rate is 0.001,
and is decreased by a factor of 0.1 after every 20 epochs for
twice. The momentum is 0.9.

4.2. Results on Cityscapes

The Cityscapes dataset [5] is a recently released large-
scale benchmark for urban scene parsing. Its images are
taken by car-carried cameras and are collected in streets of
50 different cities. It contains in total 5,000 images with
high quality pixel-level annotations. These images are split
to 2,975 for training, 500 for validation and 1,525 for test-
ing. Cityscapes provides annotations at two semantic gran-
ularities i.e., classes and higher-level categories. Annota-
tions can be divided into 30 classes and 8 higher-level cate-
gories. For instance, the classes of car, truck, bus and other
3 classes are grouped into the vehicle category. Among
them, 19 classes and 7 categories are used for evaluation.
Our FoveaNet is trained on 2,975 training images, and eval-
uated on the validation set. Then we add 500 validation im-
ages to fine-tune our model and obtain the test performance.

Following the provided evaluation protocol with the
dataset [5], we report the performance of compared mod-
els in terms of four metrics i.e. IoUclass, IoUcategory, iIoUclass
and iIoUcategory. Compared with the standard IoUclass and
IoUcategory, the latter two IoU metrics put more emphasis on
the performance on small scale instances. The resolution of
images is 2048×1024, which brings a challenge to training
deep networks with limited GPU memory. Hence, we use
a random image crop of 896 × 896 in training. For build-
ing the perspective-aware CRFs model, we train a Faster-
RCNN on Cityscapes with 8 classes whose ground truth
bounding boxes can be derived from instance annotations,
including truck, bus, motorcycle.

Perspective Distortion We now quantitatively analyze
how much perspective distortion affects urban scene pars-
ing and demonstrate perspective distortion is a severe is-
sue for urban scene parsing. We evaluate the baseline FCN
model (trained on the whole images) on two image sets:
one contains only the central region and the other contains
only the peripheral region, as illustrated in Figure 5. Ta-
ble 2 shows a detailed comparison between these two im-
age sets on Object and Vehicle category, which consist of
3 and 4 classes respectively. First, we find that the perfor-
mance on the Object category in the central region is much
worser than in the peripheral region. More concretely, we
find that the IoUcategory of Object drops 10.6% in the central
region. This performance drop comes from the small object
scales in the center region caused by perspective distortion.
This problem can also be observed from parsing results in
Figure 5. The parsing in the central region lacks enough de-
tails. Second, generic parsing models tend to “break down”
a large-scale object into several pieces of similar classes, as
illustrated in Figure 5. We can observe from Table 2 that
the IoUCategory of Vehicle improves 2.7%, but corresponding
IoUClass deteriorates largely in the peripheral region. This
can be largely attributed to misclassification between fine-



Table 1: Performance comparison among several variants of FoveaNet on the Cityscapes validation set. The metric of iIoU is not
applicable for categories of road to bicycle. Best viewed in color.

Metric ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr.
lig

ht

tr.
si

gn

ve
g.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
cy

cl
e

bi
cy

cl
e

C
la

ss

C
at

eg
or

y

FCN Baseline IoU 97.7 81.9 91.0 48.5 52.9 58.2 63.1 73.5 91.4 61.6 94.3 78.1 56.0 93.4 57.5 81.2 66.2 60.4 74.2 72.7 87.6
iIoU —————— 60.4 37.8 84.8 36.2 58.5 43.1 36.9 56.4 51.8 72.8

+ fixed fovea region IoU 97.8 82.8 91.3 48.0 51.0 60.8 66.7 75.6 91.7 61.3 94.5 79.2 57.0 93.3 55.3 79.9 65.1 62.4 75.1 73.1 88.3
iIoU —————— 62.8 46.2 86.5 36.3 59.6 43.2 42.2 59.6 54.6 75.4

+ PEN fovea region IoU 97.8 82.9 91.4 48.6 54.3 62.5 69.0 77.3 91.9 60.7 94.4 80.6 60.3 93.6 56.8 80.2 60.4 65.8 76.2 73.9 88.8
iIoU —————— 64.7 48.6 87.2 42.8 62.2 45.3 46.9 61.4 57.4 76.6

+ PEN fovea region
& normal CRFs

IoU 97.7 82.7 90.7 48.7 51.5 54.1 60.7 75.3 90.9 62.9 94.5 78.9 57.7 93.3 61.8 83.4 70.8 65.2 74.7 73.5 87.2
iIoU —————— 61.6 47.0 83.3 36.2 58.5 43.7 45.7 59.0 54.4 73.6

+ PEN fovea region
& depth-aware CRFs

IoU 97.7 82.4 91.2 47.2 53.9 61.8 67.9 76.5 91.7 60.5 94.2 79.8 58.6 93.9 60.6 84.2 69.7 64.2 75.5 74.3 88.4
iIoU —————— 63.2 46.7 87.0 40.4 60.6 44.2 42.8 59.8 55.6 75.6

+ PEN fovea region
& persp-aware CRFs

IoU 97.9 83.0 91.5 47.7 54.5 62.8 69.1 77.5 91.9 60.9 94.4 80.7 60.4 94.4 72.5 86.2 72.7 66.8 76.4 75.9 88.8
iIoU —————— 65.1 48.9 87.8 43.0 62.3 49.2 46.8 61.6 58.1 76.8

Figure 5: Typical parsing result of baseline FCN model. We eval-
uate FCN on peripheral and central region respectively, to analyze
how much a perspective distortion affects urban scene parsing.

Table 2: Comparison on Object and Vehicle category between
peripheral and central regions.

Region peripheral central

IoUcategory object 69.7 59.1

IoUClass

pole 62.8 51.1
tr. light 66.3 58.2
tr. sign 77.7 67.5

IoUcategory vehicle 93.3 90.6

IoUClass

car 94.3 91.8
truck 48.0 66.0
bus 78.7 83.0
train 61.0 71.6

grained classes, which is reflected by the IoUClass metric.
Objects in the peripheral region have an unbalanced larger
scale due to perspective distortion. The performance drop
on Vehicle category is brought by the “broken-down” issue.

Ablation Analysis We now analyze FoveaNet by inves-
tigating the effects of each component separately. Ta-
ble 1 lists the performance of adding each component of
FoveaNet to the baseline model (vanilla FCN) on the valida-
tion set. We also give a qualitative comparisons in Figure 6.
From the results, we can make following observations.

Perspective-aware Parsing: The 2nd row in Figure 6
shows that PEN successfully estimates the global perspec-
tive geometry. In the heatmap, small scale objects have
larger response values (brighter). We compare the fovea re-
gion estimated by PEN (yellow rectangle) with a pre-fixed
fovea region estimated from the global average (red rect-

angles; ref. Eqn. (1)). Comparing these two fovea regions
shows PEN better localizes the regions covering small ob-
jects and is adaptive to different images. For example, the
leftmost image presents a road turning left and thus small
scale objects crowd in the left panel. PEN effectively lo-
cates this region but the globally fixed one fails.

We also quantitatively compare the benefits of these
two fovea region localization strategies in Table 1 (+ fixed
fovea region vs. + PEN fovea region). One can observe
that relying on the fovea regions provided by PEN signif-
icantly performs better by a margin of 2.8% in terms of
iIoUclass. Compared with the baseline FCN model, perform-
ing perspective-aware parsing with the help of PEN signifi-
cantly improves the performance by 5.6% and 3.8% on the
instance-level scores iIoUclass and iIoUcategory respectively
(highlighted in blue). This verifies perspective information
is indeed beneficial for urban scene parsing.

Figure 6 provides more qualitative results. We visual-
ize the parsing results on the fovea region (from PEN) with
FoveaNet or with FCN baseline model (the 4th row and the
3rd row respectively). One can observe that perspective-
aware parsing gives results with richer details. Particularly,
the pole, traffic light and traffic sign are parsed very well.
This is also confirmed by their IoU improvement in Table 1
(highlighted in green), which is up to 6%. These qualitative
and quantitative results clearly validate the effectiveness of
the perspective-aware parsing network on objects of small
scales, as it can better address the scale heterogeneity issue
in urban scenes.

Perspective-aware CRFs: Based on the perspective-
aware parsing on the fovea region, we further compare
perspective-aware CRFs, normal dense CRFs and depth-
aware CRFs in Table 1. The depth-aware CRFs model is
similar to the perspective-aware CRFs model, except that
the perspective heatmap in Eqn. (2) is replaced by single
image depth prediction from the method in [10].

We observe that truck, bus and train are the three classes
with most severe “broken-down” errors. Applying the nor-
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Figure 6: Example parsing results on Cityscapes. 1st-2nd row: urban scene images with two types of fovea regions derived from global
prior (red) and PEN (yellow) based on its estimated heatmap (2nd row). 3rd row: parsing result on fovea regions with FCN baseline. 4th
row: parsing result on fovea region with FoveaNet. FoveaNet produces more detailed parsing results on small scale objects e.g., pole,
traffic light, traffic sign. Best viewed in color.

mal dense CRFs improves the IoUclass of these three classes
by up to 10.4% (highlighted in brown). This demonstrates
that the normal dense CRFs model is effective in allevi-
ating the “broken-down” error to some extent. However,
the normal dense CRFs model harms the parsing results
of small-scale objects. This can be observed from IoUclass
of pole, traffic light and traffic sign (highlighted in orange)
which significantly drop w.r.t. results provided by its base-
line (baseline FCN + PEN fovea region). This is due to
over-smoothness artifacts of the normal dense CRFs as it is
unaware of the scale variance within the image.

In contrast, the perspective-aware CRFs model signifi-
cantly boosts the IoUclass of truck, bus, and train by 15.7%,
6.0%, 12.3% respectively (highlighted in red), without
harming the results of small objects. Therefore, by incorpo-
rating perspective information, the perspective-aware CRFs
model successfully reduces the “broken-down” errors with-
out bringing over-smoothness, superior to the normal dense
CRFs. The depth-aware CRFs model is superior to the nor-
mal dense CRFs one, but inferior to the perspective-aware
CRFs one. This demonstrates that considering perspective
geometry is useful but depth prediction is not so discrimi-
native as perspective information predicted by our proposed
model, as discussed in Section 3.3.

Figure 7 gives additional parsing examples from the

perspective-aware CRFs model. The trained Faster R-CNN
model provides several object bounding boxes for the three
urban scene images. PEN predicts perspective scores on
these objects, where a brighter value indicates a higher
probability of being near to the vanishing point (2nd row).
We can observe that before applying perspective-aware
CRFs, large scale objects suffers from “broken-down” er-
rors (3rd row). Perspective-aware CRFs significantly re-
duces such errors in the peripheral region without over-
smoothing small objects (e.g., pole) (4th row).

Comparison with State-of-the-art We fine-tune the
FoveaNet using both training and validation images. Then
on the test set we compare its performance with state-of-
the-art published models which achieved best performance.
Table 3 shows the results. Our FoveaNet outperforms all
the published state-of-the-arts. FoveaNet performs espe-
cially well at instance-level (see iIoU results). Compared
with the FCN model, FoveaNet brings significant improve-
ment on iIoUclass and iIoUcategory, up to 5.2%. These two
instance-level scores reflect the good parsing performance
of FoveaNet on small scale objects. The improvement
of IoUclass and IoUcategory can be largely attributed to our
perspective-aware CRFs, which can significantly reduce
“broken-down” errors. Upon acceptance, we will release
the code and model.
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Figure 7: Parsing results of perspective-aware CRFs on Cityscapes validation set. Top: input images with object detection bounding
boxes (yellow). 2nd row: parsing results from FCN. Large scale objects in peripheral region present “broken-down” errors. 3rd row: the
perspective information by PEN which is integrated into proposed perspective-aware CRFs. Bottom: FoveaNet applies perspective-aware
CRFs to remove the “broken-down” error. Best viewed in color.

Table 3: Performance comparison with baseline models on
Cityscapes test set.

Methods
Class Category

IoU iIoU IoU iIoU
Dilation10 [36] 67.1 42.0 86.5 71.1
NVSegNet [1] 67.4 41.4 87.2 68.1
DeepLabv2-(Resnet-101) [21] 70.4 42.6 86.4 67.7
AdelaideContext [23] 71.6 51.7 87.3 74.1
LRR-4x [11] 71.8 47.9 88.3 74.1
Baseline FCN 71.3 47.2 87.8 72.9
FoveaNet (ours) 74.1 52.4 89.3 77.6

4.3. Results on CamVid
Cambridge-driving Labeled Video Database

(CamVid) [2] consists of over 10min of high quality
videos. There are pixel-level annotations of 701 frames
with resolution 960 × 720. Each pixel is labeled with
one of the 32 candidate classes. Perspective geometry
can also be observed on these frames. Following previous
works [1, 20], we use 11 classes for evaluation and report
the per-pixel and average per-pixel accuracy. To implement
FoveaNet, we reuse PEN and Faster-RCNN trained on
Cityscapes urban scene images. The two-branch FCN
model (coarse and fovea branch) are initialized from
ResNet-101 and fine-tuned on CamVid training and valida-
tion sets. The performance of FoveaNet on the test set and
the comparison with state-of-the-arts are shown in Table 4.
FoveaNet outperforms the best baseline method on this
dataset by 1.7% and 3.7% in global accuracy and average
accuracy respectively. Due to limited space, we defer

Table 4: Performance comparison with baseline models on
CamVid test set.

Global Accuracy Average Accuracy
Zhang et al.[37] 82.1 55.4
Bulo et al.[30] 82.1 56.1
Shuai et al.[32] 91.6 78.1
FoveaNet 93.3 81.8

qualitative results on CamVid to Supplementary Material.

5. Conclusion
We proposed a new urban scene parsing model FoveaNet

by considering the ubiquitous scale heterogeneity when
parsing scene images, which can provide state-of-the-art
performance as validated on the Cityscapes and CamVid
datasets. FoveaNet exploits the perspective geometry infor-
mation through two novel components, perspective-aware
parsing net and perspective-aware CRFs model, which work
jointly and successfully to solve the common scale issues,
including parsing errors on small distant objects, “broken-
down” errors on large objects and over-smoothing artifacts.
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