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Abstract

Beyond current image-based virtual try-on systems that
have attracted increasing attention, we move a step for-
ward to developing a video virtual try-on system that pre-
cisely transfers clothes onto the person and generates visu-
ally realistic videos conditioned on arbitrary poses. Besides
the challenges in image-based virtual try-on (e.g., clothes
fidelity, image synthesis), video virtual try-on further re-
quires spatiotemporal consistency. Directly adopting exist-
ing image-based approaches often fails to generate coher-
ent video with natural and realistic textures. In this work,
we propose Flow-navigated Warping Generative Adversar-
ial Network (FW-GAN), a novel framework that learns to
synthesize the video of virtual try-on based on a person im-
age, the desired clothes image, and a series of target poses.
FW-GAN aims to synthesize the coherent and natural video
while manipulating the pose and clothes. It consists of: (i) a
flow-guided fusion module that warps the past frames to as-
sist synthesis, which is also adopted in the discriminator to
help enhance the coherence and quality of the synthesized
video; (ii) a warping net that is designed to warp clothes
image for the refinement of clothes textures; (iii) a pars-
ing constraint loss that alleviates the problem caused by the
misalignment of segmentation maps from images with dif-
ferent poses and various clothes. Experiments on our newly
collected dataset show that FW-GAN can synthesize high-
quality video of virtual try-on and significantly outperforms
other methods both qualitatively and quantitatively.

1. Introduction
The emergence of image synthesis technique signif-

icantly advances the progress of the virtual try-on sys-
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tems [16, 36], which are of great value to lots of applica-
tions, e.g., online shopping, movie making, and video edit-
ing. However, most of the try-on methods are based on sin-
gle images, while the video-based virtual try-on problem
has been largely unexplored. In this work, we make a first
attempt to address this problem. Specifically, given a person
image, the desired clothes, and a series of target poses, we
synthesize a realistic-looking video that preserves the dis-
tinct appearance from both the person and clothes image.
Some of the results are illustrated in Figure 1, showing that
the proposed approach can generate high-quality virtual try-
on videos with convincing details.

Most existing methods use encoder-decoder-like neural
networks [16, 36] to synthesize virtual try-on images. They
mainly focus on synthesizing the person image by replac-
ing with other clothes, conditioned on a fixed pose, and
thus fail to generate realistic videos due to the lack of abil-
ity of manipulating arbitrary poses and different clothes
when virtual try-on is conducted in unconstrained scene.
Besides 2D image synthesis, various 3D modeling tech-
niques [22, 27, 30, 42] have been developed for virtual try-
on. However, those methods focus on single images as well,
and have not been extended to video generation. Moreover,
it requires huge labor cost to collect the 3D annotation and
massive computation to build the 3D model, which limits
the performance of virtual try-on in the practical scenario.

Particularly, in a video sequence, person or clothes im-
ages often contain various visual appearance, viewpoints,
and arbitrary human layouts due to different poses. It is
impractical for current convolution-based generators to ex-
ploit entangled information without the aid of any external
structured knowledge. Besides, different poses for a whole
human body may result in heavy occlusions or dramatic ap-
pearance changes for some body parts. Furthermore, spa-
tiotemporal consistency is critical to the visual quality of
the synthesized video, which is not considered in the exist-
ing image-based synthesis methods.
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Figure 1. Some results of our method. Given a person image, the desired clothes, and the series of the target poses, our FW-GAN learns
to automatically fit the desired clothes onto the person, restructure the pose of the person, and output the realistic video. Input images in
the first column, the poses in the first row, the results of virtual try-on for each pose in the other columns.

To address the above mentioned challenges, we propose
an FW-GAN to achieve the controllable video synthesis for
virtual try-on, by manipulating both different poses and var-
ious clothes. FW-GAN consists of three main components:
1) a flow-navigated module that enforces the synthesized
video to be spatiotemporal coherent and high-quality visual;
2) a warping net adapted to estimate the grid of transforma-
tion parameters that warps the desired clothes in order to fit
the corresponding region of the person image; 3) a human
parsing constraint loss that constrains body layouts to en-
force consistency from a global view. In particular, the op-
tical flow [3] plays a critical role in the proposed FW-GAN
for making the generated videos coherent, which warps the
pixel of the preceding frames to the new frames, and is
also used as the conditioned input of the flow-embedding
discriminator, resulting in more photo-realistic frames and
spatiotemporal smoothing videos. Besides, to preserve the
details of the desired clothes, a weight mask is leveraged to
adaptively select the pixel values from the warped desired
clothes or synthesized clothes.

We conduct extensive experiments on our newly col-
lected dataset, including quantitative comparison, ablation
study, and human perceptual study on the Amazon Me-
chanical Turk platform. The proposed FW-GAN substan-
tially outperforms all existing methods on synthesizing vir-
tual try-on video with arbitrary poses both qualitatively and
quantitatively. The main contributions of our work include:

• To generate high-quality synthesized video of virtual
try-on under a sequence of poses, a person image, and
the desired clothes, we propose an FW-GAN to incor-
porate the optical flow with warping net for warping
the frames and clothes images, respectively, which can
preserve the details in global and local views.

• A flow-embedding discriminator is proposed that in-
corporate an effective flow input to the discriminator
to improve the spatiotemporal smoothing.

• We employ a parsing constraint loss function as one
form of structural constraints to explicitly encourage
the model to synthesize results under difference poses
and various clothes to produce coherent part configu-
rations with the input image.

2. Related Work
Image synthesis. Generative adversarial networks

(GANs) [12] has recently achieved impressive results on
image synthesis. To capture the image distribution, GANs is
capable of generating fake images which are indistinguish-
able from the real images. Conditional generative adver-
sarial networks (cGANs) [26] can generate samples with
desired attributes by appending condition on the inputs of
both the generator and discriminator, and showed promising
results on image-to-image translation[20, 15, 14, 9, 10, 8].
For person image generation, Lassner et al. [23] proposed
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Figure 2. The framework of the proposed FW-GAN. FW-GAN consists of four encoder and two decoder with residual blocks. FW-GAN
first to predict the flow, then warps the last past synthesized frame. We use weight mask and grid mask to polish the results.

a generative model of people in clothing for the full body.
They first learned to generate human parsing maps and then
learned a model to translate the resulting segments to realis-
tic images, but the fashion attributes are not controllable in
this method. Zhao et al. [43] proposed an image generation
model to generate multi-view cloth images from only a sin-
gle view input. [25, 10, 33, 8] synthesized person images
conditioned on arbitrary poses.

Virtual try-on. Most previous works on virtual try-on
were based on computer graphics. Guan et al. [13] de-
signed a framework for synthesizing clothes on 3D bod-
ies, with ignoring the shape and pose. Anna et al. [1] pro-
posed a method for dynamically tracking and retexturing
cloth for real-time visualization in a virtual mirror environ-
ment. Sekine et al. [30] developed a virtual fitting method
for adjusting 2D clothing images to users by modeling their
3D body shapes from single images. Pons-Moll et al. [27]
addressed the problem of capturing multiple garments on
fully dressed people in motion by using a multi-part 3D
model of clothed bodies. Yang et al. [41] proposed an ap-
proach for computing a realistic 3D model of a human body
from a single photograph. There are also a few works based
on image-based generative models which aim to synthesize
perceptually correct images from real 2D images. Jetchev
and Bergmann [21] introduced a conditional analogy GAN
to swap fashion items. However, during inference, they
needed the pair images of the original item on the person
and the target item, which might not be easy to acquire. VI-
TON [16] used a coarse-to-fine framework to replace the

original fashion item on the person with the desired item,
and enhance the fidelity of the synthesized image with a re-
finement network. [36, 9] addressed a similar problem, but
it also aimed to preserve clothing characteristic by learning
a thin-plate spline transformation with a geometric match-
ing module.

Video synthesis. Extensive studies have been conducted
on video synthesis. Video inpainting [40], video matting
and blending [2, 7] and video super-resolution [31, 32] were
proposed for addressing specific problems. Chan et al. [6]
proposed a method for transferring dance movement from a
source video of a person dancing into a target if acquiring
a video lasting for a few minutes in which the target sub-
ject performs standard moves. Their method was based on
pix2pixHD [38] and a state of the art pose detector Open-
Pose [4, 34, 39]. vid2vid [37] addressed the problem of
video-to-video synthesis based on GANs coupled with a
spatiotemporal adversarial objective. The video technique
has huge application potential, but the virtual try-on for gen-
erating video is less explored.

3. FW-GAN
3.1. Problem Formulation

Given a pose sequence, a person image, and a clothes
image, we aim to generate a photo-realistic video in which
the person wears the desired clothes, and the person’s move-
ment is the same as the pose sequence. In order to generate
the correspondent result with arbitrary inputs, we can train
a generative model with a training dataset. Formally, let Ip,



Ic, and Pi represent the person image input, the clothes im-
age input, and the i-th frame of pose sequence respectively.
And we denote the pose sequence input by S = {Pi}Ni=1

and the video output by V = {Ri}Ni=1 whereN is the frame
number of the pose sequence and Ri is the i-th frame of the
output. Our goal is to learn the mapping (Ip, Ic, S) → V .
Our training dataset is {V i

t , I
i
c, I

i
p}ni=1, where V i

t , Iic, Iip are
the i-th training video, clothing image input, and person im-
age input respectively, and n is the number of samples.

3.2. Pose Embedding

A pose of a person in an image is composed of 2D skele-
tons with M joints P = (l1, ..., lM ), where li = (xi, yi) is
the coordinate of the i-th joint in the image. As interpreted
in [28], the coordinate li can be regarded as a random vari-
able and has a probability density map pi formed by:

pi[x, y] = P (li = (x, y)) ∀(x, y) ∈ U (1)

where U is the coordinate space of the input image. Then
the pose P is equivalent to a concatenation of all probability
density maps p = (p1, ...,pM ).

3.3. Network Architecture

3.3.1 Generator

We propose a residual-like generator to incorporate the op-
tical flow with warping net for exploiting temporal infor-
mation, a personal appearance and clothes information si-
multaneously. Formally, our generator is based on a con-
ditional GAN framework which aims to capture the condi-
tional probability distribution. We denote the generator by
G. Let Ip represents the random variable of the person im-
age input. Ic is the random variable of the clothes image
input, and S = {Pi}Ni=1 is the pose sequence. Then we
have the pose embedding p of the pose sequence S. Let
V

′
= {Ri}Ni=1 represents the output of G. Moreover, let

V represents the ground truth of the video. The genera-
tor G is equivalent to a conditional distribution so that we
can compute the probability of V

′
withG(V

′ |p, Ic, Ip). We
optimize G by solving the standard minimax optimization
problem. Formally, the objective function is defined by:

min
G

max
D
Lgan = EV∼pdata(V )[logD(V )]

+ EJ∼p(J)[log(1−D(G(V
′
|p, Ic, Ip)],

(2)

where J = (p, Ic, Ip) and D is the discriminator.
As shown in Figure 2, in the generator, every input has a

correspondent encoder to extract feature maps. Then we
concatenate and input these feature maps into two sepa-
rate networks which are both composed of several residual
blocks. The outputs of residual networks are fed to decoders
which will generate optical flow and photo-realistic images.

3.3.2 Discriminator

Several works [38, 20, 24] show that using multiple discrim-
inators could lighten the model collapse problem in GAN
training. At the meantime, our task requires both visual
quality of each frame and temporal consistency. Based on
the above observation, we design two discriminators: frame
discriminator, and flow-embedding discriminator.

Frame Discriminator is responsible for the visual qual-
ity of each frame. In other words, it ensures that each gener-
ated frame looks like real video frames. Frame discrimina-
tor takes four inputs, pose sequence S = {Pi}Ni=1, person
appearance image Ip, cloth image Ic, generated frame v.
Tuple (S, Ip, Ic) could be thought of conditional input of
frame discriminator. This discriminator should output 1 for
a true pair ((S, Ip, Ic), v) and 0 for fake pair ((S, Ip, Ic), ṽ).

Flow-embedding Discriminator is responsible for tem-
poral consistency between neighboring frames. We think
consecutive generated frames should have temporal dynam-
ics of consecutive real frames with the same optical flow.
Just like frame discriminator, flow-embedding discrimina-
tor also takes conditional input, optical flow. We denote O
as K − 1 optical flow for the K consecutive frames. This
discriminator should output 1 for a true pair(O, v) and 0 for
fake pair (O, ṽ). During experiments, we find those dis-
criminators well on video try-on. It makes the person and
the clothing move more smoothly on the generated video.
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Figure 3. The framework of Warping Net. We first input the
person image, target pose, and desired clothes into the encoder to
extract the feature maps, respectively. Then, the matching layers
are trained to compute the relation among of the feature maps. Fol-
lowed by the matching layers is a regression network that outputs
the warping grid of transformation mappings. Finally, we use this
warping grid to warp the desired clothes.

3.3.3 Warping Net

As shown in Figure 3, the Warping Net consists of two en-
coders, matching layers, and a regression network. Let Ck
denote a Convolution layer with kernel size of 4, a stride
2, and k filters. Let Rk dnotes a Convolution layer with
kernel size of 3, a stride 1, and k filters, followed by Batch-
Norm2d Normalization and ReLU activation function. Let
Lk denotes a Linear function output k dimension. For the
Matching layers, we directly use the correlation map com-
putation from the GEOCNN [29]. Therefore, encoder con-
tains: C64, C128, C256, C512, R512, R512. Regression
network consists of: C512, C256, C128, C64, L32.



3.4. Learning Objective Functions

In this paper, the objective function of FW-GAN is a
weighted sum of several different losses. We will introduce
them in details in the following sections.

Perceptual Loss. To obtain the high level and various
features, we extract two different features from pre-trained
VGG network and discriminators of our adversarial net-
work, following [38, 16]. Then, we combine them to denote
perceptual loss of this work.

Lperceptual =

N∑
i=0

λi‖φi(Î)− φi(Y )‖1

+

M∑
k=0

M∑
j=0

λkλj‖ϕ(k,j)(Î)− ϕ(k,j)(Y )‖1,

(3)

where φi(Î) describe the i-th feature map of the synthesized
image Î within VGG network, while λi controls the weight
of them. Similarly, ϕ(k,j)(Î) is the j-th layer feature map in
the k-th discriminator of the synthesized image Î , while λj
denotes the weight of j-th layer and λk describe the weight
of k-th discriminator. N denotes the number of VGG layers,
we set N = 5. M denotes the number of discriminator’s
layers, we set M = 3.

Parsing Constraint Loss. However, the above objec-
tives do not consider the local information from sub-parts.
To further improve the quality of the generated image, we
propose a novel parsing consistent loss to make the part
configuration of the generated image and those of ground
truth coherent. Let ψ is a human parser. We require the
parsing results of the synthesized image and the ground
truth image should be the same. In this paper, we ap-
ply a light network [20] to train human parser. Especially,
we denote the parsing result of the ground truth image as
F = ψ(Y ) ∈ Rn×n×c, where n is the height/width of the
image and c is the number of the semantic labels. The out-
put for the synthesized image is defined as P = ψ(Î). For
each pixel, the parsing results should be the same, e.g., the
predicted parsing labels F (h,w) ∈ Rc for the pixel index
(h,w) is equal to the P (h,w). Since the softmax loss is a
widely used method in deep CNNs that quantifies the dis-
similarity between the two probabilities. Thus, we define
the parsing consistent loss as

Lpcl = −
W∑

w=0

H∑
h=0

C∑
l=0

F (h,w, l) logP (h,w, l), (4)

where the C denotes the number of parsing labels, H de-
notes the width of image, W denotes the width of image.

3.4.1 Overall Objective Function

Besides, we directly adopt a flow loss as Lflow from
FlowNet [11]. We take the L1 loss from the pix2pix [19] as

our grid loss Lgrid to constrain the generator to learn more
pixel from the warped clothes. Let Lgan denotes the loss
of generator in this paper. In summary, FW-GAN objective
describes a weighted sum of all the losses as the Eq. (5)
shown.

Lsyn =α1Lgan + α2Lperceptual + α3Lpcl

+ α4Lflow + α5Lgrid,
(5)

where hyper-parameters αi, (i = 1, 2, 3, 4, 5) control the
weight of each loss.

4. Experiments

In this section, we first introduce the implementation de-
tails of the proposed FW-GAN. Then we describe the eval-
uation metrics for evaluating the quality of the generated
video. Next, we introduce the baseline method and our col-
lected dataset. Finally, we make a visual comparison with
the method of baseline and ablation study and analyze the
quantitative and qualitative results.

4.1. Implementation Details

In training, the generator and the discriminators are up-
dated alternatively with a mini-batch size of 4 through the
stochastic gradient solver, i.e., Adam optimizer (β1 = 0.5,
β2 = 0.999). We alternate between 1 steps of optimizing
the generator and 1 step of optimizing the discriminators.
The initial learning rate is 0.0002. The implementations are
based on the Pytorch platform on four Titan XP GPU. Af-
ter 30 epochs, high-quality results can be obtained. During
testing, only the generator is activated, and it takes about
50ms for generating one image.

4.2. Dataset

We constructed a new video dataset appropriate to Video
Virtual Try-on, named VVT. We first collected 791 videos
of fashion model catwalk, which backgrounds are mostly
white colour, ensuring us to focus on the task of virtual
try-on and providing convincing evaluations for our models.
Moreover, then we removed the noisy frames without pose
results or parsing results. The frame number of each video
mainly lies in the range between 250 and 300. We split the
videos into a training set and a testing set with 661 videos
and 130 videos respectively. The total frame numbers of the
training set and the testing set are 159170 and 30931 respec-
tively. We also crawled 791 person images and 791 clothes
images and made every video associated with a person im-
age and a clothes image. We also ensured that every person
image is different from the person in the associated video
and every clothes image is different from the clothes in the
associated person image. Therefore, a sample in the dataset
is composed of a video, a person image and a clothes image.
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Figure 4. Visual compare with the baseline method and the ablation methods on the VVT dataset. First three columns start from left
are inputs to our task. They are person image, desired clothes and target pose respectively. The last three columns are generated frame from
different methods. The images of the last column are generated from our proposed algorithm. It looks better than the other two algorithms.

4.3. Evaluation metrics

Fréchet Inception Distance(FID) [18] is a metric for
evaluating image synthesis quality. It uses the inception
model [35] as a feature extractor after removing the last
few layers of the network, and extracts feature vectors from
real images and synthesized images respectively. Then
it computes the mean µ and covariance matrix Σ for the
feature vectors from the real images. It also computes
the same statistics µ̃ and Σ̃ for the feature vectors from
the synthesized images. Then the FID is calculated as
‖µ− µ̃‖2+Tr(Σ+Σ̃−2

√
ΣΣ̃). Because this paper focuses

on the video synthesis problem, we deploy a variant of FID
following vid2vid [37], which is more suitable for evaluat-
ing video synthesis quality than the original FID. We use
I3D [5] and 3D-ResNeXt-101 [17] as our pre-trained video
recognition CNNs. In detail, we take 10 frames as a video
clip, and exploit the output of the last average pooling layer
in the network as our feature vector.

4.4. Baselines

CP-VTON [36] stands for Characteristic-Preserving Vir-
tual Try-On Network proposed by Wang et al. [36]. Com-

pared with VITON [16], they mainly deal with key char-
acteristics of clothes. It is obvious that CP-VTON [36] in-
deed generate cloth with much more key characteristics. On
our experiments, we retrain CP-VTON and VITON [16] on
the VVT dataset. When testing, we adapt them to our task
which means we input pose heatmap of each frame rather
than fixed pose heatmap. During the experiment, we find
that it generates almost the same image no matter what pose
heatmap we input. Then, we take a glance at the dataset
used for training CP-VTON and VITON and found that
most images of that dataset are in almost the same pose.

4.5. Qualitative Results

Figure 6 and Figure 4 show some qualitative results on
VVT dataset. The results show that the flow module and
grid module play an important role in synthesizing realistic-
look video. Without the grid, module leads to synthesize
blurred and low-resolution video, and the pattern on the
clothing is lost. Without flow-embedding discriminator net-
work (w/o) fails to obtain spatiotemporal smoothing. Fig-
ure 6 demonstrates that given a person image, a clothes im-
age, and a target pose image, FW-GAN is capable of synthe-
sizing our desired image result in which the desired person
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Figure 5. Some results of the Warping Net, which are shown in the
4th column. The warped grid are in the 5th column. The Warping
Net predict the transformation mapping parameters to warp the
clothes which at a similar level of realism as the ground truth.

Fréchet Inception Distance I3D ResNeXt-101
CP-VTON [36] 32.35 159.50
VITON [16] 30.05 129.74
FW-GAN (w/o grid + flow + parsing) 6.57 14.01
FW-GAN (w/o grid + flow) 7.37 17.47
FW-GAN (w/o grid + parsing) 7.47 15.88
FW-GAN (w/o grid) 7.04 15.31
FW-GAN (w/o parsing) 7.30 19.34
FW-GAN (w/o DT) 7.45 20.78
FW-GAN (w/o flow) 6.98 13.17
FW-GAN (Ours) 7.052 23.94

Table 1. Comparison with previous methods on the VVT dataset.

is wearing the desired clothes with the desired pose. Fig-
ure 7 shows some failure results of our method caused by
uncommon styles of clothing. Some results of Warping Net
are shown in the Figure 5. We can observe that the proposed
warping net can achieve promising performance.

4.6. Quantitative results

We used our learned models and the baseline to synthe-
size 3000 video clips in the validation set. Every video clip
was composed of 10 continuous frames. Then we deployed
I3D and 3D-ResNeXt-101 to extract spatial-temporal fea-
ture vectors from the synthesized video clips and the real
video clips and computed the FID based on these feature
vectors. Table 1 reports the FID of our approach and the
baseline, demonstrating that our method significantly out-
performs the baseline. It also shows the detailed ablation
studies conducted on our model. Although the ablation re-
sults in Table 1 do not demonstrate remarkable improve-
ment, we think that this is because FID uses deep convo-
lution layers to extract feature maps and will lose some in-

formation important for evaluating video synthesis quality.
As shown in Table 1, the FID scores of VITON [16] in the
last row that indicates the proposed FA-GAN can gener-
ate more spatio-temporal smoothing videos, compared with
other methods. The lower number indicates the better per-
formance. In particular, w/o flow denotes FW-GAN with-
out optical flow. w/o parsing denotes FW-GAN without the
parsing constrain loss. w/o grid deonotes FW-GAN with-
out warping network. w/o DT denotes FW-GAN without
the flow-embedding discriminator. w/o (grid + flow + pars-
ing) denotes FW-GAN without warping network, optical
flow, and the parsing contraint loss. w/o (grid + flow) de-
notes FW-GAN without warping network, and optical flow.
w/o (grid + parsing) denotes FW-GAN without warping net-
work, and the parsing contraint loss.

5. Human Perceptual Study

To achieve the fair visual comparison, we deploy a user
study in the Amazon Mechanical Turk (AMT) platform.
AMT is a platform that operates a marketplace for work that
requires human intelligence. We carefully design a subjec-
tive A/B test similar to Wang et al. [37]. Different from
them, we let the image GIFs represents the video. We show
the images for workers that contain person image, the de-
sired clothes image, and the target pose GIFs, followed by
two shuffled options GIFs. All the images and the GIFs
are the sizes of 256 × 192. There are about 100 workers,
and about 1000 assignments in the AMT study. The assign-
ments are shown for workers in unlimited time. The work-
ers are asked for picked one option which captures the pose
sequence, the desired clothes, and the appearance of the per-
son well. The results are shown in the Table 2, which reports
the FW-GAN outperform the other methods and achieve the
highest human preference scores.

Human Preference Score Human Preference Score
(limited time) (unlimited time)

FW-GAN (ours) / CP-VTON [36] 0.5940 / 0.4060 0.889 / 0.111
FW-GAN (ours) / VITON [16] 0.5721 / 0.4279 0.893 / 0.107

Table 2. Human perceptual study with others on the VVT dataset.

5.1. Ablation Study

We conduct an ablation study to explore the effects of
the important component of FW-GAN. The results are re-
ported in Table. 1. Our model without grid module, flow
module and parsing constraint loss got the best FID score in
I3D, and the model without flow module achieved the best
FID score in ResNeXt-101. Although our full model didn’t
obtained the best FID score, Figure 4 demonstrates that our
full model is capable to synthesize more photo-realistic im-
ages with clearer and more complete clothing patterns. On
the other hand, FID uses the output of last pooling layer
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Figure 6. Some results of FW-GAN on the VVT dataset.

as the feature vector, which loses some information of the
original image input, and the FID scores among our ablation
models differ not much.

Person Image Desired Clothes Target Pose Synthesized Image

Figure 7. Some failure results conduct on the VVT dataset, which
were caused by uncommon clothes.

6. Conclusion
We propose Flow-navigated Warping Generative Adver-

sarial Network (FW-GAN) for video virtual try on, which
generates novel person video in arbitrary poses and var-

ious clothes. To achieve good virtual try-on quality, our
FW-GAN mainly contains three components: 1) FW-GAN
incorporate the optical flow and geometric matching for
warping the frames and clothes image, respectively, which
can preserve the details in global and local views, 2) a
flow-embedding discriminator is proposed that incorporate
an effective flow input to the discriminator to improve the
spatiotemporal smoothing, and 3) a parsing constraint loss
function as one form of structural constraints to explicitly
encourage the model to synthesize results under difference
poses and various clothes to produce coherent part config-
urations with the input image. Our experimental results
demonstrate that the proposed FW-GAN significantly out-
performs other state-of-the-art approaches on synthesizing
video of virtual try-on by manipulating pose and clothes.
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