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Abstract

Virtual try-on systems under arbitrary human poses have
significant application potential, yet also raise extensive
challenges, such as self-occlusions, heavy misalignment
among different poses, and complex clothes textures. Exist-
ing virtual try-on methods can only transfer clothes given
a fixed human pose, and still show unsatisfactory perfor-
mances, often failing to preserve person identity or texture
details, and with limited pose diversity. This paper makes
the first attempt towards a multi-pose guided virtual try-
on system, which enables clothes to transfer onto a person
with diverse poses. Given an input person image, a de-
sired clothes image, and a desired pose, the proposed Multi-
pose Guided Virtual Try-On Network (MG-VTON) gener-
ates a new person image after fitting the desired clothes into
the person and manipulating the pose. MG-VTON is con-
structed with three stages: 1) a conditional human parsing
network is proposed that matches both the desired pose and
the desired clothes shape; 2) a deep Warping Generative
Adversarial Network (Warp-GAN) that warps the desired
clothes appearance into the synthesized human parsing map
and alleviates the misalignment problem between the input
human pose and the desired one; 3) a refinement render net-
work recovers the texture details of clothes and removes ar-
tifacts, based on multi-pose composition masks. Extensive
experiments on commonly-used datasets and our newly-
collected largest virtual try-on benchmark demonstrate that
our MG-VTON significantly outperforms all state-of-the-
art methods both qualitatively and quantitatively, showing
promising virtual try-on performances.

∗Corresponding author is Jian Yin

Figure 1. Some results of our model. The clothes and poses images
are shown in the first row, while the person images shown in the
first column. The results manipulated by both clothes and pose are
shown in the other columns.

1. Introduction

Virtual try-on, which enables users to try on clothes to
check the size or style in a virtual way, has a huge amount
of commercial value and attracts extensive attention in com-
puter vision. Many virtual try-on systems [13, 37] have
been presented and achieve promising results when the pose
is fixed. However, these approaches usually learn to synthe-
size the image conditioned on clothes only. When given a
different pose, they tend to synthesize blurry images, losing
most of the details and style, as shown in Figure 4.



Meanwhile, other existing works [22, 29, 44] leverage
3D models and measurements to preserve the body shape
and generate visually realistic results. However, it needs
expert knowledge and huge labor cost to collect the 3D an-
notated data and build the 3D models. When the 3D model
of the person could not be obtained or is not accurate, these
methods would become inapplicable as well. To address
these limitations, we propose a practical try-on task that al-
lows users to control both the clothes and poses without any
3D annotations. Given a person image, a desired clothes,
and a desired pose, we generate the person image that wears
the new clothes with preserved textural appearance, and re-
construct the pose simultaneously, as illustrated in Figure 1.

The challenge of advancing from fixed-pose virtual try-
on to the multi-pose try-on task comes from the fact that
the warping of target clothes and the manipulation of hu-
man pose have to be learned simultaneously. Without
explicitly decomposing the two and modeling the intri-
cate interplay among the appearance, clothes and pose, an
image-based end-to-end solution as in those previous meth-
ods [13, 37, 46] would not be able to disentangle the pose
and appearance space, usually resulting blurry artifacts.

Targeting at the problems mentioned above, we propose
a novel Multi-pose Guided Virtual Try-On Network (MG-
VTON) that can generate a new person image after fitting
both desired clothes into the input image and manipulat-
ing the pose. Our MG-VTON is a multi-stage framework
with generative adversarial learning. Concretely, we design
a pose-clothes-guided human parsing network to estimate a
plausible human parsing of the target image conditioned on
the information from the source image (including the ap-
proximate body shape, the face mask and the hair mask), as
well as the desired clothes and the target pose. The precise
region of the body parts in the source image could guide the
synthesis of human parsing in an effective way. Based on
the synthesized human parsing map, a geometric matching
model is then used to warp the target clothes and seamlessly
fit it onto the person. In addition, we design a deep Warping
Generative Adversarial Network (Warp-GAN) to synthesize
the coarse result, alleviating the large misalignment caused
by the different poses and the diversity of clothes appear-
ance. Finally, we present a refinement network, utilizing
multi-pose composition masks to recover the texture details
and alleviate the artifacts caused by the large misalignment
between the reference pose and the target pose.

To demonstrate our model, we collected a new dataset,
named MPV, by collecting various clothes images and per-
son images with different poses from the same person.
Furthermore, we also conduct experiments on the Deep-
Fashion [47] datasets for evaluation. Following the ob-
ject evaluation protocol [38], we conduct a human subjec-
tive study on the Amazon Mechanical Turk (AMT) plat-
form. Both quantitative and qualitative results indicate that

our method achieves effective performance and high-quality
images with appealing details. The main contributions of
our work are summarized as follows:

• We introduce a novel task of virtual try-on conditioned
on multiple poses, and collect a new dataset that covers
different poses and various clothes.

• We propose a novel Multi-pose Guided Virtual Try-On
Network (MG-VTON) that handles large pose varia-
tions by disentangling the warping of clothes appear-
ance and the pose manipulation in multiple stages.
Specifically, we propose a pose-clothes guided human
parsing network to first synthesize the human parsing
with the desired clothes and pose, which effectively
guides the virtual try-on to achieve reasonable results
via the correct region parts.

• We design a Warp-GAN that integrates human pars-
ing with geometric matching to alleviate blurry issues
caused by the misalignment among different poses.

• A pose-guided refinement network is further proposed
to adaptively controls the composition mask according
to different poses, which learns to recover details and
remove artifacts.

2. Related Work
Generative Adversarial Networks (GANs).

GANs [10] consists of two networks where the dis-
criminator learns to classify between the synthesized
images and the real images while the generator tries to
fool the discriminator. Existing works have studied its
connections with other generative models [15, 28], and
applied the approach in various domains, such as style
transfer [17, 45, 20], image inpainting [41, 12], video
synthesis [6], and text generation [14, 43, 42]. Inspired
by those impressive results of GANs, we also apply the
adversarial loss to exploit a virtual try-on method with
GANs.

Person image synthesis. The skeleton-guided ap-
proach [40] generates person image conditioning on target
skeletons. PG2 [25] applied a coarse-to-fine framework that
consists of a coarse stage and a refined stage. The work [26]
further improved the results with a new decomposition strat-
egy. The deformableGANs [35] and [1, 11, 5] attempted
to alleviate the misalignment problem between different
poses using transformation on the coarse rectangle region
and warped the parts, respectively. [16, 7] added structured
human body constraints in learning the generation model.
V-UNET [8] introduced a variational U-Net [32] to synthe-
size person image by restructuring the shape with stickman
labels. The work [30] applied CycleGAN [45] directly to
manipulate pose. However, all those works fail to preserve
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Figure 2. The overview of the proposed MG-VTON. Stage I: We first decompose the reference image into three binary masks. Then, we
concatenate them with the target clothes and target pose as an input of the conditional parsing network to predict human parsing map. Stage
II: Next, we warp clothes, remove the clothing from the reference image, and concatenate them with the target pose and synthesized parsing
to synthesize the coarse result by using Warp-GAN. Stage III: We finally refine the coarse result with a refinement render, conditioning on
the warped clothes, target pose, and the coarse result.

the textures consistency. The reason behind that is they ig-
nore to consider the interplay among the human parsing,
the clothing, and the pose. The human parsing can guide
the generator to synthesize image in the precise region level
that ensures the coherence of body structure.

Virtual try-on. VITON [13] and CP-VTON [37] all pre-
sented an image-based virtual try-on network, which can
transfer a desired clothes on the person by using a warping
strategy. VITON computed the transformation mapping by
the shape context TPS [2] directly. CP-VTON introduced
a learning method to estimate the transformation parame-
ters. FashionGAN [46] learned to generate new clothes on
the input image of the person conditioned on a sentence
describing the different outfit. However, all of the above
methods synthesized the image of person only on the fixed
pose, which limits the applications in the realistic virtual
try-on simulation. ClothNet [23] presented an image-based
generative model to produce new clothes conditioned on
color. CAGAN [18] proposed a conditional analogy net-
work to synthesize person image conditioned on the paired
of clothes, which limits the practical virtual try-on scenar-
ios. ClothCap [29] utilized the 3D scanner to capture the
clothes, the shape of the body automatically. [34] presented
a virtual fitting system that requires the 3D body shape,
which is laborious for collecting the annotation. In this pa-
per, we introduce an effective method for learning to syn-
thesize image with the new outfit on the person in different
poses through adversarial learning.

3. MG-VTON
We propose a novel Multi-pose Guided Virtual Try-On

Network (MG-VTON) that learns to synthesize the new per-
son image for virtual try-on by manipulating both clothes
and pose. Given an input person image, a desired clothes,
and a desired pose, the proposed MG-VTON aims to pro-
duce a new image of the person by manipulating the de-
sired clothes and poses. Inspired by the coarse-to-fine

idea [13, 25], we adopt an outline-coarse-fine strategy that
divides this task into three subtasks, including the condi-
tional parsing learning, the Warp-GAN, and the refinement
render. The Figure 2 illustrates the overview of MG-VTON.

We first apply the pose estimator [4] to estimate the pose.
Then, we encode the pose as 18 heatmaps, which is filled
with ones in a circle with radius 4 pixels and zeros else-
where. A human parser [9] is used to predict the human
parsing which is utilized to extract the binary mask of the
face, the hair, and the shape of the body. Following VI-
TON [13], we downsample the shape of the body to a lower
resolution (16×12) and directly resize it to the original res-
olution (256 × 192), which helps to alleviate the artifacts
caused by the variety of the body shape.

3.1. Conditional Parsing Learning

To preserve the structural coherence of the person im-
age while manipulating both clothes and the pose, we de-
sign a pose-clothes-guided human parsing network, condi-
tioned on the image of clothes, the pose heatmap, the ap-
proximated shape of the body, the mask of the face, and the
mask of hair. As shown in Figure 4, the baseline methods
failed to preserve some parts of the person (e.g., the color
of the trousers and the style of hair.) because they fed the
person image and clothes image into the model directly. In
this work, we leverage the human parsing maps to address
those problems, which can help the generator to synthesize
the high-quality image on parts-level.

Formally, given an input image of person I , an input im-
age of clothes C, and the target pose P , this stage learns to
predict the human parsing map S

′

t conditioned on clothes C
and the pose P . As shown in Figure 3 (a), we first extract
the hair mask Mh, the face mask Mf , the body shape Mb,
and the target pose P by using a human parser [9] and a
pose estimator [4], respectively. We then concatenate them
with the image of clothes as the input of the conditional
parsing network. The inference of S

′

t can be formulated as
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Figure 3. The network architecture of the proposed MG-VTON. (a)(b): The conditional parsing learning module consists of a pose-
clothes-guided network that predicts the human parsing, which helps to generate high-quality person image. (c)(d): The Warp-GAN learns
to generate a realistic image by using a warping features strategy due to the misalignment caused by the diversity of pose. (e): The
refinement render network learns the pose-guided composition mask that enhances the visual quality of the synthesized image. (f): The
geometric matching network learns to estimate the transformation mapping conditioned on the body shape and clothes mask.

maximizing the posterior probability:

p(S
′

t|(Mh,Mf ,Mb, C, P )) = G(Mh,Mf ,Mb, C, P ).
(1)

We adopt a ResNet-like network as the generator G to build
the conditional parsing model. We adopt the discriminator
D directly from the pix2pixHD [38]. We apply the L1 loss
for further improving the performance, which is advanta-
geous for generating more smooth results [40]. Inspired by
the LIP [9], we apply the pixel-wise softmax loss to encour-
age the generator to synthesize high-quality human parsing
maps. Therefore, we formulated the problem of conditional
parsing learning as:

min
G

max
D

F (G,D)

= EM,C,P∼pdata [log(1−D(G(M,C,P ),M,C, P ))]

+ ESt,M,C,P∼pdata [logD(St,M,C, P )]

+ ESt,M,C,P∼pdata [‖St −G(M,C,P )‖1]
+ ESt,M,C,P∼pdata [Lparsing(St, G(M,C,P ))],

(2)

where M denotes the concatenation of Mh,Mf , and Mb.
The loss Lparsing denotes the pixel-wise softmax loss [9].
The St denotes the ground truth human parsing. The pdata
represents the distributions of the real data.

3.2. Warp-GAN

Since the misalignment of pixels would lead to generate
the blurry results [35], we introduce a deep Warping Gen-
erative Adversarial Network (Warp-GAN) warps the de-

sired clothes appearance into the synthesized human pars-
ing map, which alleviates the misalignment problem be-
tween the input human pose and desired human pose. Dif-
ferent from deformableGANs [35] and [1], we warp the
feature map from the bottleneck layer by using both the
affine and TPS (Thin-Plate Spline) [3] transformation rather
than process the pixel directly by using affine only. Thanks
to the generalization capacity of [31], we directly use the
pre-trained model of [31] to estimate the transformation
mapping between the reference parsing and the synthesized
parsing. We then warp the w/o clothes reference image by
using this transformation mapping.

As illustrated in Figure 3 (c) and (d), the proposed
deep warping network consists of the Warp-GAN generator
Gwarp and the Warp-GAN discriminator Dwarp. We use the
geometric matching module to warp clothes image, as de-
scribed in the section 3.4. Formally, we take warped clothes
image Cw, w/o clothes reference image Iw/o clothes, the tar-
get pose P , and the synthesized human parsing S

′

t as in-
put of the Warp-GAN generator and synthesize the result
Î = Gwarp(Cw, Iw/o clothes, P, S

′

t). Inspired by [19, 13, 24],
we apply a perceptual loss to measure the distances between
high-level features in the pre-trained model, which en-
courages generator to synthesize high-quality and realistic-
looking images. We formulate the perceptual loss as:

Lperceptual(Î , I) =

n∑
i=0

αi‖φi(Î)− φi(I)‖1, (3)

where φi(I) denotes the i-th (i = 0, 1, 2, 3, 4) layer fea-



ture map in pre-trained network φ of ground truth image I .
We use the pre-trained VGG19 [36] as φ and weightedly
sum the L1 norms of last five layer feature maps in φ to
represent perceptual losses between images. The αi con-
trols the weight of loss for each layer. Besides, following
pixp2pixHD [38], the feature map at different scales from
different layers of discriminator enhance the performance
of image synthesis, we also introduce a feature loss and for-
mulate it as:

Lfeature(Î , I) =

n∑
i=0

γi‖Fi(Î)− Fi(I)‖1, (4)

where Fi(I) represent the i-th (i = 0, 1, 2) layer feature
map of the trained Dwarp. The γi denotes the weight of L1
loss for corresponding layer.

Furthermore, we also apply the adversarial loss Ladv [10,
27] and L1 loss L1 [40] to improve the performance. We
design a weight sum losses as the loss of Gwarp, which en-
courages theGwarp to synthesize realistic and natural images
in different aspects. We formulate it as:

LGwarp = λ1Ladv + λ2Lperceptual + λ3Lfeature + λ4L1, (5)

where λi (i = 1, 2, 3, 4) denotes the weight of correspond-
ing loss, respectively.

3.3. Refinement Render

In the coarse stage, the identification information and the
shape of the person can be preserved, but the texture details
are lost due to the complexity of the clothes image. Pasting
the warped clothes onto the target person directly may lead
to generate the artifacts. Learning the composition mask
between the warped clothes image and the coarse results
also generates the artifacts [13, 37] due to the diversity of
pose. To solve the above issues, we present a refinement
render utilizing multi-pose composition masks to recover
the texture details and remove some artifacts.

Formally, we define Cw as an image of warped clothes
obtained by geometric matching learning module, Î as a
coarse result generated by the Warp-GAN, P as the target
pose heatmap, and Gp as the generator of the refinement
render. As illustrated in Figure 3 (e), taking Cw, Î , and
P as input, the Gp learns to predict a towards multi-pose
composition mask and synthesize the rendered result. We
formulate the result of the refinement render as:

Îp = Gp(Cw, Î, P )� Cw + (1−Gp(Cw, Î, P ))� Î , (6)

where � denotes the element-wise matrix multiplication.
We also adopt the perceptual loss to enhance the perfor-
mance that the objective function of Gp can be written as:

Lp = µ1Lperceptual(Îp, I) + µ2‖1−Gp(Cw, Î, P )‖1, (7)

where µ1 denotes the weight of perceptual loss and µ2 de-
notes the weight of the mask loss.

3.4. Geometric matching learning

Inspired by [31], we adopt the convolutional neural net-
work to learn the transformation parameters, including fea-
ture extracting layers, feature matching layers, and the
transformation parameters estimating layers. As shown in
Figure 3 (f), we take the mask of the clothes image and the
mask of body shape as input which is first passed through
the feature extracting layers. Then, we predict the corre-
lation map by using the matching layers. Finally, we ap-
ply a regression network to estimate the TPS (Thin-Plate
Spline) [3] transformation parameters for the clothes image
directly based on the correlation map.

Formally, given an input image of clothesC and its mask
Cmask, following the stage of conditional parsing learning,
we obtain the approximated body shape Mb and the syn-
thesized clothes mask Ĉmask from the synthesized human
parsing. This subtask aims to learn the transformation map-
ping function T with parameter θ for warping the input im-
age of clothes C. Due to the unseen of synthesized clothes
but have the synthesized clothes mask, we learn the map-
ping between the original clothes mask Cmask and the syn-
thesized clothes mask Ĉmask obey body shape Mb. Thus,
we formulate the objective function of the geometric match-
ing learning as:

Lgeo matching(θ) = ‖Tθ(Cmask)− Ĉmask‖1, (8)

Therefore, the warped clothes Cw can be formulated as
Cw = Tθ(C), which is helpful for addressing the problem
of misalignment and learning the composition mask in the
above subsection 3.2 and subsection 3.3.

4. Experiments
In this section, we first make visual comparisons with

other methods and then discuss the results quantitatively.
We also conduct the human perceptual study and the abla-
tion study, and further train our model on our newly col-
lected dataset MPV test it on the Deepfashion to verify the
generation capacity.

4.1. Datasets

Since each person image in the dataset used in VI-
TON [13] and CP-VTON [37] only has one fixed pose, we
collected the new dataset from the internet, named MPV,
which contains 35,687 person images and 13,524 clothes
images. Each person image in MPV has different poses.
The image is in the resolution of 256× 192. We extract the
62,780 three-tuples of the same person in the same clothes
but with different poses. We further divide them into the
train set and the test set with 52,236 and 10,544 three-tuples,
respectively. Note that we shuffle the test set with different
clothes and diverse pose for quality evaluation. DeepFash-
ion [47] only has the pairs of the same person in different
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poses but lacks of the image of clothes. To verify the gener-
alization capacity of the proposed model, we extract 10,000
pairs from DeepFashion and randomly select clothes image
from the test set of the MPV for testing.

4.2. Evaluation Metrics

We apply three measures to evaluate the proposed model,
including subjective and objective metrics: 1) We perform
pairwise A/B tests deployed on the Amazon Mechanical
Turk (AMT) platform for human perceptual study. 2) we
use Structural SIMilarity (SSIM) [39] to measure the simi-
larity between the synthesized image and ground truth im-
age. In this work, we take the target image (the same person
wearing the same clothes) as the ground truth image used to
compare with the synthesized image for computing SSIM.
3) We use Inception Score (IS) [33] to measure the quality
of the generated images, which is a conventional method to
verify the performances for image generation.

4.3. Implementation Details

Setting. We train the conditional parsing network, Warp-
GAN, refinement render, and geometric matching network
for 200, 15, 5, 35 epochs, respectively, using ADAM op-
timizer [21], with the batch size of 40, learning rate of
0.0002, β1 = 0.5, β2 = 0.999. We use two NVIDIA Ti-
tan XP GPUs and Pytorch platform on Ubuntu 14.04.

Architecture. As shown in Figure 3, each generator
of MG-VTON is a ResNet-like network, which consists of
three downsample layers, three upsample layers, and nine
residual blocks, each block has three convolutional layers
with 3x3 filter kernels followed by the bath-norm layer and
Relu activation function. For the discriminator, we apply
the same architecture as pix2pixHD [38], which can han-
dle the feature map in different scale with different layers.
Each discriminator contains four downsample layers which

include InstanceNorm and LeakyReLU activation function.

4.4. Baselines

VITON [13] and CP-VTON [37] are the state-of-the-
art image-based virtual try-on methods which assume the
pose of the person is fixed. They all used warped clothes
image to improve the visual quality, but lack of the abil-
ity to generate image under arbitrary poses. In particular,
VTION directly applied shape context matching [2] to com-
pute the transformation mapping. CP-VTON borrowed the
idea from [31] to estimate the transformation mapping us-
ing a convolutional network. Furthermore, we incorporate
a state-of-the-art method DeformableGAN [35] with CP-
VTON form other two baseline: DeformableGAN + CP-
VTON and CP-VTON + DeformableGAN. Deformable-
GAN + CP-VTON first applys a pose-guided network De-
formableGAN to convert the person in the reference im-
age to the desired pose, then applys a virtual try-on net-
work CP-VTON to try on the desired clothes. On the con-
trary, CP-VTON + DeformableGAN first uses CP-VTON
to try on, then changes the pose by DeformableGAN. To
obtain fairness, we first enriched the input of the VITON,
CP-VTON, and DeformableGAN. Then, we retrained the
VITON, CP-VTON, and DeformableGAN on MPV dataset
with the same splits (train set and test set) as our model.

4.5. Quantitative Results

We conduct experiments on two benchmarks and com-
pare against two recent related works using two widely used
metrics SSIM and IS to verify the performance of the image
synthesis, summarized in Table. 2. Higher scores are better.
The results show that our proposed methods significantly
achieve higher scores and consistently outperform all base-
lines on both datasets thanks to the cooperation of our con-
ditional parsing generator, Warp-GAN, and the refinement



Table 1. Human study on MPV and DeepFashion. Each cell lists the percentage where our MG-VTON is preferred over the other method.

VITON CP-VTON DeformableGAN CP-VTON MG-VTON MG-VTON MG-VTON
+ CP-VTON + DeformableGAN (w/o Parsing) (w/o Render) (w/o Mask)

MPV 83.1% 85.9% 89.2% 99.6% 98.5% 82.4% 84.6%
DeepFashion 88.9% 83.3% 93.2% 99.2% 99.0% 84.6% 75.5%

Table 2. Comparisons on MPV and DeepFashion.

MPV DeepFashion

Model SSIM IS IS

VITON [13] 0.6395 2.394 ± 0.205 2.302 ± 0.116
CP-VTON [37] 0.7054 2.519 ± 0.107 1.977 ± 0.266
DeformableGAN + CP-VTON 0.6935 3.354 ± 0.047 3.130 ± 0.054
CP-VTON + DeformableGAN 0.7151 2.746 ± 0.068 2.649 ± 0.047
MG-VTON (w/o Parsing) 0.7539 2.578 ± 0.116 2.556 ± 0.056
MG-VTON (w/o Render) 0.7544 2.694 ± 0.119 2.813 ± 0.047
MG-VTON (w/o Mask) 0.7332 3.309 ± 0.137 3.368 ± 0.055
MG-VTON (Ours) 0.7442 3.154 ± 0.142 3.030 ± 0.057

Figure 5. Effect of the quality of human parsing. The quality of
human parsing significantly affects the quality of the synthesized
image in the virtual try-on task.

Figure 6. Some results from our model trained on MPV and tested
on DeepFashion, which synthesizes the realistic image and cap-
tures the desired pose and clothes well.

render. Note that the MG-VTON (w/o Render) achieves
the best SSIM score, and the DeformableGAN + CP-VTON
achieves the best IS score, but they obtain worse visual qual-

ity results and achieve lower scores in AMT study compare
with MG-VTON (ours), as illustrated in the Table 1 and Fig-
ure 7. As shown in Figure 4, MG-VTON (ours) synthesizes
more realistic-looking results than MG-VTON (w/o Ren-
der), but the latter achieve higher SSIM score, which also
can be observed in [19]. Hence, we believe that the pro-
posed MG-VTON can generate high-quality person image
for multi-pose virtual try-on with convincing results.

4.6. Qualitative Results

We perform visual comparisons of the proposed method
with VITON [13], CP-VTON [37], DeformableGAN + CP-
VTON, CP-VTON + DeformableGAN, , MG-VTON (w/o
Parsing), MG-VTON (w/o Render), and MG-VTON (w/o
Mask), illustrated in Figure 4, which shows that our model
generates reasonable results with convincing details. Al-
though the baseline methods have synthesized a few details
of clothes, it is far from the practice towards multi-pose vir-
tual try-on scenario. In particular, they fail to preserve the
identity and the textures of the clothing. Besides, the cloth-
ing of the lower-body also cannot be preserved while the
clothing of upper-body is replaced. Furthermore, the base-
line methods cannot synthesize the hairstyle and face well
that result in blurry images. The reasons behind are that
they overlook the high-level semantics of the reference im-
age and the relationship between the reference image and
target pose in the virtual try-on task. Different from them,
we adopt clothes and pose guided network to generate the
target human parsing, which is helpful to alleviate the prob-
lem that lower-body clothing and hairstyle cannot be pre-
served. In addition, we also design a deep warping network
with an adversarial loss carefully to solve the issue that the
identity cannot be preserved. Furthermore, we capture the
interplay of among the poses and present a multi-pose based
refined network that learns to erase the noises and artifacts.

4.7. Human Perceptual Study

We perform a human study on MPV and Deepfash-
ion [47] to evaluate the visual quality of the generated im-
age. Similar to pix2pixHD [38], we deployed the A/B tests
on the Amazon Mechanical Turk (AMT) platform. There
are 1,600 images with size 256×192. We have shown three
images for reference (reference image, clothes, pose) and
two synthesized images with the option for picking. The
workers are given two choices with unlimited time to pick
the one image looks more realistic and natural, considering
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Figure 8. Effect of clothes and pose for the human parsing, which
is manipulating by the pose and the clothes.

how well target clothes and pose are captured and whether
the identity and the appearance of the person are preserved.
Specifically, the workers are shown the reference image, tar-
get clothes, target pose, and the shuffled image pairs. We
collected 8,000 comparisons from 100 unique workers. As
illustrated in Table 1, the image synthesized by our model
obtained higher human evaluation scores and indicate the
high-quality results compare to the baseline methods.

4.8. Ablation Study

We conduct an ablation study to analyze the important
parts of our method. Observed from Table. 2, MG-VTON
(w/o Mask) achieves the best scores. However, as shown in
Figure 4, it may inevitably generate artifacts. In Figure 7
and Figure 4, we further evaluate the effect of the compo-
nents of our MG-VTON that human parsing, the multi-pose
composition mask loss, the perceptual loss, and the pose
in the refinement render stage, and the warping module in
Warp-GAN are important to enhance the performance.

We also conduct an experiment to verify the effect of the
human parsing in our MG-VTON. As shown in Figure 5,
there is a positive correlation between the quality of the hu-
man parsing with that of the result. We further to verify the
effect of the synthesized human parsing by manipulating

the desired pose and clothes, as illustrated in Figure 8. We
manipulate the human parsing instead of the person image
directly, and we can synthesize the person image in an eas-
ier and more effective way. Furthermore, we introduce an
experiment that trained on our collected dataset MPV and
test on the DeepFashion dataset to verify the generalization
of the proposed model. As the Figure 6 shown, our model
captures the target pose and clothes well.

5. Conclusions

In this work, we make the first attempt to investigate
the multi-pose guided virtual try-on system, which enables
clothes transferred onto a person image under different
poses. We propose an MG-VTON that generates a new
person image after fitting the desired clothes into the in-
put image and manipulating human poses. Our MG-VTON
decomposes the virtual try-on task into three stages, incor-
porates a human parsing model is to guide the image synthe-
sis, a Warp-GAN learns to synthesize the realistic image by
alleviating misalignment caused by different pose, and a re-
finement renders recovers the texture details. We construct
a new dataset for the multi-pose guided virtual try-on task
covering person images with more poses and clothes diver-
sity. Experiments demonstrate that our MG-VTON signifi-
cantly outperforms existing methods both qualitatively and
quantitatively with promising performances.
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