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Abstract

One fundamental problem in object retrieval with the
bag-of-visual words (BoW) model is its lack of spatial in-
formation. Although various approaches are proposed to
incorporate spatial constraints into the BoW model, most
of them are either too strict or too loose so that they are
only effective in limited cases. We propose a new spatially-
constrained similarity measure (SCSM) to handle object ro-
tation, scaling, view point change and appearance deforma-
tion. The similarity measure can be efficiently calculated by
a voting-based method using inverted files. Object retrieval
and localization are then simultaneously achieved without
post-processing. Furthermore, we introduce a novel and ro-
bust re-ranking method with the k-nearest neighbors of the
query for automatically refining the initial search results.
Extensive performance evaluations on six public dataset-
s show that SCSM significantly outperforms other spatial
models, while k-NN re-ranking outperforms most state-of-
the-art approaches using query expansion.

1. Introduction

Most state-of-the-art image and visual object retrieval
approaches adopt the standard bag-of-words model initially
introduced in [23]. While this model works generally well,
it suffers from two main problems: 1) the loss of spatial
information when representing the images as histograms of
quantized features; and 2) the deficiency of feature’s dis-
criminative power, either because of the degradation caused
by feature quantization, or due to feature’s intrinsic limita-
tion to tolerate large variation of object appearance.

In this paper, we address both of these issues by propos-
ing a novel spatially-constrained similarity measure (SC-
SM), a voting-based approach to efficiently compute the
measure, and a re-ranking method with the query’s k-
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Figure 1. An example search result of our approach on a real-
world database with thousands of personal images with mixtures
of buildings, people, pets, animals, faces, flowers, party, sports,
etc. Left is the query image with the rectangle. The top 20 re-
trieval and localization results are shown on the right.

nearest neighbors. In SCSM, only the matched visual word
pairs with spatial consistency (i.e., roughly coincident fea-
ture locations under some similarity transformation) are
considered. In other words, the similarity measure is de-
signed to handle object rotation, translation and scaling, and
performs well with moderate object deformation.

Based on that, a voting-based approach is further pro-
posed to efficiently calculate the similarity with low extra
memory and search time, which is inspired by the gener-
alized Hough transform method[13, 11]. Our method can
simultaneously localize the object with high accuracy in
each retrieved image in the initial search step, which is
rarely done by previous retrieval methods. To the best of
our knowledge, only [12] and [10] try to localize the ob-
ject by sub-image search, which is relatively slow when
the database is large. Moreover, our approach can robust-
ly retrieve and localize non-rigid objects such as faces or
human bodies while previous RANSAC-based localization
method (as post-processing) cannot due to non-rigidity of
object categories. See Fig.1 for an example.

Meanwhile, since we have already accurately localized



the object in the retrieved images, we can further use
such information to refine our results. We observe that, a
database image is similar to the query image if it is also
similar to the nearest neighbors of the query. An image that
contains the query object may not be visually close to the
query due to feature variations caused by view point change,
occlusion or deformation. However, some of query’s neigh-
bors, which can be considered as variations of the query
object, may share the same features with that image.

Therefore, we propose a re-ranking method with the k-
nearest neighbors (k-NN) of the query. After the initial
search, localized objects in the top-k retrieved images are
also used as queries to perform search. A database im-
age will have different ranks when using those neighbors as
queries. Accordingly a new score of each database image is
collaboratively determined by those ranks, and re-ranking is
performed using the new scores. Unlike previous query ex-
pansion and re-ranking methods, our method is rank-order
based, which discards the features and their distances when
measuring the score. Therefore, it can successfully retrieve
the objects with large variations, while avoiding degradation
when there are irrelevant objects in the k-nearest neighbors.
Experimental results show it achieves higher and more ro-
bust performance than query expansion.

The contributions of this paper are three-fold:

1. A spatially-constrained similarity measure, which sig-
nificantly outperforms the bag-of-words model, and
existing methods with spatial constraints.

2. A voting-based approach to to evaluate the similarity
measure that simultaneously, and very efficiently, re-
trieves and localizes the object in the database images.

3. A re-ranking method with the k-nearest neighbors of
the query. Using SCSM and k-NN reranking, we meet
or exceed state-of-the-art retrieval performance on s-
tandard datasets.

2. Related Work

In this section, we briefly introduce the methods de-
signed to handle the above mentioned two problems of the
bag-of-words model, i.e., incorporation of spatial informa-
tion, and query expansion.

In [19], spatial information is used in a post-verification
step after initial search using RANSAC. However it comes
with high computational cost, and can consequently on-
ly verify a limited number of top-ranked images. There-
fore, various approaches are proposed to encode relative-
ly weak spatial constraints in the initial search step with-
out sacrificing much retrieval efficiency. Feature location-
s are probably the most frequently used spatial informa-
tion as they can be easily integrated into the inverted file
representation[26, 12, 27, 1]. They are used to check the
matching order consistency as in bundled features [26], to

project the features to different bins to form an ordered spa-
tial bag-of-features model[ 1], or to search the object in local
sub-regions[12]. Visual phrases are also proposed[27], by
calculating the location offset of two matched features. Oth-
er ways of encoding spatial information include local affine
frames for each feature[18], angle and scale parameters[6]
and feature spatial distances[4]. However, these spatial
constraints are either too restrictive so that only translation
can be handled[26, 12, 27], or too loose to capture enough
information[1, 6].

To alleviate the information loss in feature quantization,
soft assignment on visual words is adopted in [20], while
contextual weighting on the vocabulary is introduced in
[25]. The probabilistic relationships between the visual
words is learned in [14]. Feature metrics are also learned
either to increase the feature discriminative power[9, 21] or
to reduce the descriptor dimensionality[8].

Another way to compensate the deficiency in feature
matching is to automatically expand the query[5, 3]. It
tends to improve the retrieval performance especially when
the appearance of the object has large variation. However,
the performance of query expansion tends to be degraded
by false positive search results. Therefore it requires ac-
curate spatial verification which needs high computational
cost. Though a faster method is proposed recently[24], the
re-ranking is still performed only on the top-ranked images.
In [22], a close set (i.e. the images likely containing the
same object) of database images is pre-constructed before
searching. A similar idea was proposed in [17] where pair-
wise feature distances between images are updated using
k-nearest neighbors. However constructing such pair-wise
data structure is computationally too expensive with large
dataset. Different from these methods, we propose a spa-
tially constrained similarity measure and a k-NN re-ranking
method without sacrificing much efficiency.

3. Object similarity ranking and localization
3.1. Spatially constrained similarity measure

Given a query image with a specified object, the spa-
tial information of the object can be represented by a rect-
angle B = {z.,y.,w, h,0}, as shown in Fig.2(a), where
(2, ye) is the coordinate of the rectangle center, w and
h are the width and height of the rectangle respectively,
and @ is the rotated angle of the rectangle (§ = 0 for the
query rectangle). We would like to find the same object
with certain similarity transformation T in a database im-
age. T can be decomposed into three parameters T =
{R(a), s,t}, where « is the rotated angle of the objec-
tand R(a) = cosa —sina

sina  cosa
and t = (zy,y) is the translation. Accordingly, the trans-
formed object rectangle in the database image would be

, s is the scale change,



B = T(B) = {z. + 26,y + y,s - w,s - h,0 = a} !,
as shown in Fig.2(b).

By the above definition, our task becomes (1) evaluating
the similarity between the query object and a database im-
age by finding a (transformed) sub-rectangle in the database
image which matches best to the query object; and (2) sort-
ing the database images based on the similarity.

To achieve this, we first define our spatially constrained
similarity measure (SCSM). Denote the object rectangle
in the query by (), and the features extracted from @ by
{f1, f2,- -+, fm}. Similarly, denote the database image by
D, and the features in D by {g1, g2, - - , gn }- Given a trans-
formation T, the similarity between @ and D is defined as:
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where k denotes the k-th visual word in the vocabulary, and
N is the vocabulary size. w(f;) = w(g;) = k means f; and
g; are both assigned to visual word k. L(f) = (xf,yy) is
the 2D image location of f, and T(L(f)) is its location in D
after the transformation. The spatial constraint ||T(L(f;))—
L(g;)|| < € means that after transformation, the locations
of two matched features should be sufficiently close.

In Eqn.1, idf (k) is the inverse document frequency of vi-
sual word k, and tfg (k) is the term frequency (i.e. number
of occurrence) of visual word & in Q. Similarly, tf (k) is
the term frequency of visual word k in D. This is a nor-
malization term to penalize those visual words repeatedly
appearing in the same image. When repeated patterns (e.g.
building facades, windows and water waves) exist in an im-
age, many features tend to be assigned to the same visual
word. Such “burstiness” of visual words violates the as-
sumption in the bag-of-words model that visual words are
emitted independently in the image, and therefore could
corrupt the similarity measure. This phenomenon is also
investigated in [7, 2]. For example, if m features in () and
n features in D are quantized to visual word k respectively,
there will be m - n matched pairs between two images, some
of which may also satisfy our spatial constraint, as they tend
to appear in a local neighborhood. However, if features are
directly matched without quantization, there should be at
most min(m,n) matched pairs. In other words, most of
these m - n pairs are invalid correspondences and would
largely bias our similarity measure if no normalization is
applied.

For each database image, the goal is to find the transfor-

I'We keep the aspect ratio of the object fixed but our similarity measure
can handle a large range of object deformation and viewpoint changes.
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Figure 2. Illustration on SCSM. (a) Query image () with specified
object in the blue rectangle. (b) A database image D containing
the same object with a certain transformation. (c) The object in
Q is transformed to a different scale and rotation angle. (d) The
voting map is generated according to the relative positions of the
matched features with respect to the rectangle center. The trans-
formation with the highest voting score are chosen as the best.

mation with the highest similarity, i.e.:

T" = {R(a"),s",t"} = arngaXS(Q,D|T) )
As aresult, S*(Q, D) = S(Q, D|T*) can serve as the sim-
ilarity between @ and D. All the database images are then
ranked according to S*(Q, D).

Fig.2(a) and (b) illustrates our similarity measure where
w(f;) = w(g;), butonly {(f;, g:)(¢ = 1,2, 3)} are spatially
consistent with the transformation. (f5, g5) is considered as
a false match. As for (f4, g4), it depends on the selection of
tolerance parameter ¢ in Eqn.1. If we allow relatively large
object deformation and set € higher, (fs, g4) is considered
as inliners, otherwise it is also excluded.

3.2. Optimization of the similarity measure

In order to evaluate S* (@), D) we need to find the trans-
formation 7 that maximizes the similarity score. In lieu of
a practical method to search for the true optimum, we pro-
pose an approximation based on discretizing the transfor-
mation space, which is decomposed into rotation, scaling
and translation. We first quantize the rotation angle space
to np values between 0 ~ 27 (Typically np = 4 or 8).
Similarly, the scale space is also discretized to ng values
(typically ny = 8) in a range from 1/2 to 2, which gener-
ally covers most cases. These discretizations yield a set of
possible transformation hypotheses (up to translation). The
query object is then transformed based on each hypothesis,
while keeping the location of the rectangle center the same
(i.e., no translation). Fig.2(c) shows an example of such



Figure 3. Example of voting maps and localized objects.

transformation hypothesis. To perform the transformation,
we only need to re-calculate the relative locations of all the
query features with respect to the center.

After the query rectangle is transformed to a particular
quantized rotation angle and scale, we then use a voting
scheme to find the best translation. Consider a matched
pair (f,g) between @ and D. Denote by V(f) the rel-
ative location vector from the rotated and scaled location
of f to the rectangle center cg. (f,g) can determine a
translation based on their locations, and this translation en-
forces the possible location of the rectangle center in D to
be L(cp) = L(g) — V(f). Therefore, given a matched pair,
we can find the location of rectangle center in D, and vote
a score for that location. If w(f) = w(g) = k, the voting
score for the pair (f, g) is defined as:

idf? (k)
Score(k) = tg (k) - thn () 3)

Apparently if some matched feature pairs are spatially
consistent, the center locations they are voting should be
similar. See Fig.2(d) for an example.

The cumulative votes of matched features (f, g) gener-
ate a voting map, in which each location represents a possi-
ble new object center associated with a certain translation t.
When we cast votes using Eqn.3, the accumulated score at
each location is exactly the similarity measure S(Q, D|T)
in Eqn.1. We choose the best translation t* by simply se-
lecting the mode in the voting map.

Remember before voting, we have transformed our
query to ng rotation angles and n; scales. Therefore there
are ng - ng voting maps in total. The best transformation T*
is achieved by finding the location with the highest score in
all voting maps. Meanwhile the best score naturally serves
as the similarity between the query and the database image,
which is subsequently used for ranking. This scheme allows
us to simultaneously achieve object retrieval and localiza-
tion without sub-window search or post-processing, which
is rarely done in previous work.

In practice, when the objects are mostly upright, we can
switch off rotation. When generating the voting map, we

can maintain a map with much smaller size compared to the
images, by quantizing the map to n, x n, grids. To avoid
quantization errors and allow object deformation, instead
of voting on one grid, we vote on a 5 x 5 window around
the estimated center grid for each matched pair. The voting
score of each grid is the initial Score(k) in Eqn.3 multiplied
by a Gaussian weight exp(—d/o?), where d is the distance
of the grid to the center. This has the effect of spatially
smoothing the votes and is equivalent to generating a single
vote and smoothing with a Gaussian filter afterwards.

Fig.3 shows an example of generated voting maps and
corresponding localized objects. Given the query object in
the left, the voting maps generated for three database im-
ages are shown in the first row. Each voting map has a sin-
gle peak as most feature pairs in the same object cast their
votes on the same location. The approach robustly local-
izes the object even if there is dramatic scale and view point
change, or severe occlusion.

3.3. Similarity evaluation using inverted files

To calculate our spatially-constrained similarity measure
and determine the best transformation, the locations (X- and
Y-coordinates) of the features are stored in the inverted files.

When calculating the voting map, we follow the gener-
al retrieval framework, i.e., for each word k in the query,
retrieve the image IDs and locations of k in these images
through the inverted files. Object center locations and s-
cores are then determined by Eqn.3, and votes are cast on
corresponding voting maps.

There are two ways to consider rotation and scale change
in the search process. One way is to allocate np - ns voting
maps at each search round. When traversing the inverted
files, we vote on all those maps. Therefore we only have to
traverse the inverted files once. Another way is to sequen-
tially generate voting maps for each quantized rotation and
scale value. Therefore only one voting map is maintained
for each database image. However, we need to retrieve
npg - ne times. To make a trade-off between search time and
memory, in practice we perform search for each quantized
rotation step, and generate ns voting maps with different s-
cales in each search process. In that case, we maintain 7,
voting maps for each image, and perform search npr times.

4. k-NN re-ranking

Since we have localized the object in each retrieved
database image, we can further use the top-k retrieved ob-
ject to refine our retrieval results.

Given a query image, the rank of a database image ac-
cording to S* is denoted by R(Q, D). Let N; be the query’s
i-th retrieved image. Obviously R(Q, N;) = i. According-
ly Ny = {Ni}{i=1,. ) are the query’s k-nearest neigh-
bors, as shown in Fig.4.
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Figure 4. Illustration of k-NN re-ranking. The final rank of a
database image is determined by its ranks in the retrieval results
of the query and query’s k-NN.

Figure 5. Example of £-NN re-ranking. The 4-th nearest neigh-
bor is an irrelevant image. However, its nearest neighbors in the
dashes box will not receive high scores from other images. On
the contrary, the images with red and orange boxes are close to a
majority of the query’s nearest neighbors and will have high ranks.

In most cases, the majority of these k-nearest neighbors
contain the same object as in the query image, while there
are also some false alarms. See Fig.5 for example. As the
features are variant to view point change, occlusion or ob-
ject deformation, some images with the same object are not
visually close to the query, and are ranked very low. How-
ever, they may be visually similar to certain images in N,,.

To utilize such information, we also use each localized
object in A as a query and perform search. The rank of a
database image D when using N; as the query is R(N;, D),
as shown in Fig.4. According to the rank, we assign a score
1/R(N;, D) to each database image. The final scores of the
database images are then collaboratively determined as:

w

k
0 w;g
+ 4
@D "X EN.D)

S(Q.0) = 5

where w; is the weight, which is determined by the
rank of N; in the initial search. We set wyg = 1 and
w; = 1/(R(Q,N;) +1) = 1/(i + 1). Query itself can
be regarded as the 0-th nearest neighbor, and Eqn.4 is ac-

cordingly rewritten as:

g z Wi . 1
5@, D) = ; RN, D) ~ &G+ DR, D)
We also consider the rank of the query in each of its n-
earest neighbors’ retrieval results, i.e., R(V;, Q). Here, the
rank is a unidirectional measure. Query @) and its nearest
neighbor N; are close only if R(Q, N;) and R(N;, Q) are
both high. Hence we modify the weight w; to be w; =
1/(R(Q, Ni) + R(N;, Q) +1)) = 1/(i + R(N, Q) + 1),
and the final scores of database images are determined by:

k
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Images are then re-ranked based on S(Q, D).

After re-ranking, we can further use the new top-k re-
trieved images to perform re-ranking iteratively. In most
cases, the first iteration brings significant performance im-
provement.

The proposed k-NN re-ranking approach takes advan-
tage of the localized objects in the retrieved images by SC-
SM, as we can ignore those irrelevant features outside the
objects. Furthermore, as a rank-based approach, our re-
ranking method is robust to false retrieval results in Nj,.
Unlike query expansion[5, 3], in our method, the score is in-
versely related to the ranking, and the feature information of
all the k-NN images is intentionally discarded. A database
image will not be re-ranked very highly unless it is close to
the query and the majority of those k-NN images. Consid-
er Fig.5 as an example, the irrelevant image in A, assigns
scores to its top-retrieved results. However, the weight cor-
responding to this outlier is relatively small as the rank itself
in the query’s retrieval list is not high. Furthermore, the im-
ages in the dashed box will not receive scores from other
images in V; and accordingly their scores for re-ranking is
still low. On the contrary, a relevant image such as the one
with red bounding box or orange box is close to several im-
ages in NV, and will have a high score. Experimental results
indicate our method is not sensitive to the selection of n-
earest neighbor number k. Even if k is large and there are
many outliers in A, the retrieval accuracy is still very high.
Since our method is robust to outliers, no spatial verification
is needed. Also, re-ranking can be efficiently performed on
the entire database.

5. Experiments

5.1. Datasets and implementation details

We have implemented our own retrieval system
with SIFT descriptors[13] and fast approximate k-means
clustering[15]. We evaluate our approach on four public



datasets: Oxford building?, Paris®, INRIA Holidays*, and
University of Kentucky’. 100,000 and 1M Flickr images
downloaded with random tags are also added to Oxford as
distractors to form the Oxford105k and Oxford IM dataset.
In Oxford and Paris, each query has a specified object rect-
angle, while no such rectangles are specified in INRIA and
Kentucky. So we use the entire frames as our query rectan-
gles for these two datasets. 1M vocabularies are trained for
Oxford and Paris, A 200k vocabulary is trained for INRIA
as in [6]. The vocabulary size for Kentucky is set to 500k as
there are only 7M features.

In the implementation of the voting-based method, we
switch off rotation in Oxford and Paris as most of these
query objects are upright. k-NN re-ranking is performed
on all the datasets except INRIA Holidays, as there are only
one or two relevant images for most queries in this dataset.

In evaluation, as in most of previous methods, the re-
trieval accuracy on the first three datasets and their exten-
sions is measured with the mean average precision (mAP),
while the performance measure on the Kentucky dataset is
the top-4 score, i.e., the average number of relevant images
in the query’s top 4 retrieved images as in [16].

5.2. Results of SCSM

Parameters: We first evaluate the performance of our
approach given different settings of parameters. There are
two main parameters in our method: the grid size (the num-
ber of grid cells) of the voting map®, and o2 in the Gaussian
weights exp(—d/o?).

The mAP on Oxford5k with different map sizes is shown
in Fig.6(a). As we can see, when the grid number is larger
than 16, the mAP remains flat. Therefore a 16 x 16 voting
map is already large enough, which allows us to encode the
feature location in a 1-byte integer. The performance with
different o in voting is shown in Fig.6(b). o2 = 0 mean-
s there is no Gaussian voting, i,e, each matched pair only
vote on one grid corresponding to its estimated object cen-
ter. The results show that voting on a window with Gaussian
weighting is noticeably better than voting on one grid. It is
easy to understand as such a Gaussian voting allows object
deformation and also reduces quantization errors. Howev-
er, once the Gaussian voting is adopted, the mAP does not
change much with different values of o, which indicates
that our method is not sensitive to this parameter. When
0% = 2.5, our method achieves the highest mAP. This pa-
rameter is fixed at 2.5 in all subsequent experiments.

Comparisons: We compared SCSM with the baseline
bag-of-words model. The results are shown in Table 1. We

Zhttp://www.robots.ox.ac.uk/ vgg/data/oxbuildings.

3http://www.robots.ox.ac.uk/"vgg/data/parisbuildings.

“http://lear.inrialpes.fr/jegou/data.php.

Shttp://www.vis.uky.edu/"stewe/ukbench.

The grid spacing is then determined by the maximum of image size
divided by the grid size.
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Figure 6. mAP on Oxford5k with different parameters. (a) Voting
map size, (b) Gaussian weight. It shows that SCSM is not sensitive
to wide range of grid numbers and Gaussian weights.

Datasets BoW | SCSM | SCSM+Re-ranking
Oxford5k | 0.649 | 0.752 0.884
Oxford105k | 0.568 | 0.729 0.864
Oxford IM | 0.535 | 0.685 0.841
Paris 0.630 | 0.741 0.911
INRIA 0.462 | 0.762 -
Kentucky 3.35 3.52 3.56

Table 1. The performance of our method on public datasets.

Datasets SCSM | [27] [12] [1] [6]
Oxford5Sk 0.752 | 0.713 | 0.647 | 0.651 | 0.547
Oxford105k | 0.729 | 0.604 - -
Oxford IM | 0.685 | 0.532 - 0.550 -
Paris 0.741 - - 0.632 -
INRIA 0.762 - - - 0.751

Kentucky 3.52 3.26 3.29 - -

Table 2. Comparisons of SCSM with other spatial models.

can see SCSM significantly outperforms the bag-of-words
model on all the datasets. Furthermore, in Oxfordl05k
and Oxford IM, when distractors are added, the mAP of
the baseline method decreases from 0.649 to 0.568 and
0.535 respectively, while our method is only slightly af-
fected (from 0.753 to 0.729 and 0.685 respectively). This
indicates SCSM is more scalable to larger databases. We
also compared our approach to other methods with spatial
models, as listed in Table 2. Our approach outperforms all
those methods on all the datasets. Some examples of object
retrieval and localization are provided in Fig.7.

5.3. Results of k-NN re-ranking

Parameters: There is only one parameter in our k-
NN re-ranking method, the number of nearest neighbors k.
Fig.8 shows the performance on Oxford5k when we change
k (only single iteration is used). Even with only 5 nearest
neighbors, the mAP is already improved to 0.822. When
the k-NN set V, becomes larger, the mAP keeps increasing.
Although, there are many irrelevant images in N, when k
is large (some of the queries only have less than 10 relevant
images). Our approach can still achieve very high accuracy
in that case, which demonstrates the robustness of this rank-



Figure 7. Examples of object localization by SCSM.The images in
the first column are the queries, while the localized results on the
top-4 ranked images are presented.

based method to outliers. When we use two iterations, i.e.
performing re-ranking again with the newly retrieved top-k
images, the mAP is further improved to 0.884 when £ is 30.

Similar phenomena are observed on Oxford105k, Ox-
fordIM and Paris, in which the numbers of relevant images
are similar with those in Oxford5k. We use the same set-
ting (k = 30 with two iterations) in all these datasets. The
queries in Kentucky has only 3 other relevant images. As
a result, we observed that £k = 1,2, 3 yield similar perfor-
mance on Kentucky. Considering computational efficien-
cy, we choose k = 1 with one iteration for this dataset.

Comparisons: The performance of k-NN re-ranking is
shown in Table 1. It further significantly improves the re-
trieval performance. The mAP of re-ranking on Oxford105k
and Oxford IM achieves 0.864 and 0.841 respectively, indi-
cating that our method is very robust to distractors.

Table 3 shows the comparisons of our method with
other state-of-the-art approaches. Most of these method-
s use query expansion. Some of them employ addition-
al techniques such as post-verification and soft assignmen-
t (which are not used but could be further incorporated in
our method). The results of our approach are among the
best on Oxford5k and Oxford105k, and significantly better
than previously best-achieved results on Paris (from 0.824
to 0.911). The assumption of SCSM is frequently violated
in the Kentucky dataset, while there are only 3 other relevant

5 10 20 30 40 50

Nearest Neighbor Number

Figure 8. mAP on Oxford5k using different numbers of nearest
neighbors in re-ranking. Our method gets better when k£ becomes
larger, indicating it is robust to outliers.

images for each query. Nevertheless, our method performs
reasonably well even under such an unfavorable condition.

5.4. Complexity and Scalability

Compared to the bag-of-words model, the additional
memory cost of our method includes the feature locations
in the inverted files, and the voting maps in object local-
ization. Since we use 16 x 16 voting maps, the X- and Y-
coordinates of the features can be quantized to 0,1, ...,15
and further encoded as a 8-bit integer [y = 16 - yy + xy.
Therefore we only need 1 more byte storage for each fea-
ture. Suppose we have 500 features in an image, the addi-
tional memory for a 1 million dataset is 500 MB which is
much smaller than the size of the inverted file.

A voting map is a 16 x 16 matrix with floating values,
which therefore needs 1024 byte memory storage. We allo-
cate ns = 8 maps for an image, and the additional memory
cost for each image is 8K. However, the voting maps are
only assigned for those database images having common
visual words with the query. The number of these relevant
images is much smaller than the size of the dataset.

In the search process, additional time is needed when
we generate the voting maps. Given a visual word k&, sup-
pose it has m occurrences in the query and n occurrences
in a database image, there would be m - n possible matched
pairs. Therefore we need to vote m - n times, while in the
bag-of-words model the calculation is only carried once.
However, when the vocabulary is large, m and n are 1 in
most cases. Meanwhile, when m and n is large, the vot-
ing score in Eqn. 3 is very small. Therefore in practice we
do not perform voting when m - n is larger than 10, which
speeds up the search process. With 3G Duo CPU, the av-
erage search time for the bag-of-words model is 0.084s in
Oxford5k, while SCSM takes 0.089s in average. k-NN re-
ranking with single iteration needs k additional search, but
it can be processed in parallel when the database is large.

6. Conclusions

Unlike previous image retrieval methods that focus on
image ranking, we achieves simultaneous object retrieval
and localization by employing a new spatially-constrained
similarity measure (SCSM), with a voting-based method.



Datasets SCSM  SCSM+Re-ranking  [19] [22] [7] [3] [14] [18] 2] [21]
Oxford5Sk 0.752 0.884 0.647 0814 0.685 0.827 0.849 0.901 - 0.707
Oxford105k  0.729 0.864 0.541 0.767 0.628 0.767 0.795 0.856 0.864 0.615
Oxford IM  0.685 0.841 0.465 - - - - - - 0.689
Paris 0.741 0.911 - 0.803 - 0.805 0.824 - - -
INRIA 0.762 - - - 0.848 - 0.758 0.736 - -
Kentucky 3.52 3.56 3.45 3.67 3.64 - - - - -

Table 3. Comparisons with other state-of-the-art methods.

Our SCSM significantly outperforms other spatial models
in object retrieval. Meanwhile, the objects are accurately
localized in relevant images. Based on the retrieved images
and localized objects, a k-NN re-ranking method is fur-
ther proposed to improve the retrieval performance. Exten-
sive evaluation on several datasets demonstrates our method
achieves the state-of-the-art performance. Our method can
be integrated in a retrieval system with other components
such as soft assignment[20] in feature quantization, and
learned vocabulary[14] to better serve object and image re-
trieval. Meanwhile, the localized objects in retrieved im-
ages can be adopted for other vision tasks such as image
tagging and object detection, which merits further study.
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